A Semantically-enabled Community Health Portal for Cancer Prevention and Control

Printer-friendly version

Concepts:eScience

Abstract:

We describe our semantically-enabled approach to integrate, visualize, and explore health data. The project was conducted in a trans-disciplinary setting with population and behavioral scientists, social network scientists, data analysts, and computer scientists focused on making complex health-related data available, accessible, and understandable. One of the primary goals was to allow policy makers to explore potential correlations between health-related policies and behavior change. Other goals focused on demonstrating the value of linking open data and semantic technologies for exploration of data by research and consumer audiences. The initial setting includes comparison of smoking prevalence with potentially related data including cigarette taxes, price per pack, and policies limiting smoking in workplaces, restaurants, and bars, as well as personal information including education levels, employment, and various health statistics. The collaborative process, semantic data platform, demonstrations, and benefits of Linked Data for consumer data portals are also discussed.

History

DateCreated ByLink
July 14, 2011
09:59:49
Tim LeboDownload

Related Projects:

Health on the Web
Principal Investigator: Deborah L. McGuinness and Joanne S. Luciano
Description: The Tetherless World Constellation's Health on the Web's primary goal is to explore the next generation web technology needed to improve health.
Inference Web Project LogoInference Web
Principal Investigator: Deborah L. McGuinness
Description: The Inference Web is a Semantic Web based knowledge provenance infrastructure that supports interoperable explanations of sources, assumptions, learned information, and answers as an enabler for trust. Provenance - if users (humans and agents) are to use and integrate data from unknown, uncertain, or multiple sources, they need provenance metadata for evaluation Interoperability - more systems are using varied sources and multiple information manipulation engines, thus increasing interoperability requirements Explanation/Justification - if information has been manipulated (i.e., by sound deduction or by heuristic processes), information manipulation trace information should be available Trust - if some sources are more trustworthy than others, trust ratings are desired The Inference Web consists of two important components: Proof Markup Language (PML) Ontology - Semantic Web based representation for exchanging explanations including provenance information - annotating the sources of knowledge justification information - annotating the steps for deriving the conclusions or executing workflows trust information - annotating trustworthiness assertions about knowledge and sources IW Toolkit - Web-based and standalone tools that facilitate human users to browse, debug, explain, and abstract the knowledge encoded in PML.
DCO-DS LogoLinking Open Government Data (LOGD)
Principal Investigator: Deborah L. McGuinness and Jim Hendler
Description: The LOGD project investigates the role of Semantic Web technologies, especially Linked Data, in producing, enhancing and utilizing government data published on Data.gov and other websites.
PopSciGrid LogoPopulation Science Grid (PopSciGrid)
Principal Investigator: Deborah L. McGuinness
Description: The National Cancer Institute’s (NCI) PopSciGrid Community Health Portal is an evolving platform demonstrating how health behavior, policy, and demographic data can be integrated, visualized, and communicated to empower communities and support new avenues of research and policy for cancer prevention and control. As a proof of concept for cyber-enabled population health research, the PopSciGrid Portal is designed to encourage trans-disciplinary collaboration, data harmonization, and development of new computational methods for disparate health related data.

Related Research Areas:

Data Science
Lead Professor: Peter Fox
Description: Science has fully entered a new mode of operation. Data science is advancing inductive conduct of science driven by the greater volumes, complexity and heterogeneity of data being made available over the Internet. Data science combines of aspects of data management, library science, computer science, and physical science using supporting cyberinfrastructure and information technology. As such it is changing the way all of these disciplines do both their individual and collaborative work.

Data science is helping scienists face new global problems of a magnitude, complexity and interdisciplinary nature whose progress is presently limited by lack of available tools and a fully trained and agile workforce.

At present, there is a lack formal training in the key cognitive and skill areas that would enable graduates to become key participants in escience collaborations. The need is to teach key methodologies in application areas based on real research experience and build a skill-set.

At the heart of this new way of doing science, especially experimental and observational science but also increasingly computational science, is the generation of data.

Concepts: eScience
Inference And Trust
Lead Professor: Deborah L. McGuinness
Description: Inference And Trust
Concepts:
Knowledge Provenance
Lead Professor: Deborah L. McGuinness
Description: Knowledge Provenance
Concepts: ,
Semantic Foundations
Lead Professor: Deborah L. McGuinness
Description: Semantic Foundations
Concepts:
Semantic eScience
Lead Professor: Peter Fox
Description:
Science has fully entered a new mode of operation. E-science, defined as a combination of science, informatics, computer science, cyberinfrastructure and information technology is changing the way all of these disciplines do both their individual and collaborative work.
As semantic technologies have been gaining momentum in various e-Science areas (for example, W3C's new interest group for semantic web health care and life science), it is important to offer semantic-based methodologies, tools, middleware to facilitate scientific knowledge modeling, logical-based hypothesis checking, semantic data integration and application composition, integrated knowledge discovery and data analyzing for different e-Science applications.
Partially influenced by the Artificial Intelligence community, the Semantic Web researchers have largely focused on formal aspects of semantic representation languages or general-purpose semantic application development, with inadequate consideration of requirements from specific science areas. On the other hand, general science researchers are growing ever more dependent on the web, but they have no coherent agenda for exploring the emerging trends on the semantic web technologies. It urgently requires the development of a multi-disciplinary field to foster the growth and development of e-Science applications based on the semantic technologies and related knowledge-based approaches.

Concepts: eScience