Deliberations of Reusing the PROV Ontology for Provenance Capture in Earth and Environmental Sciences

Printer-friendly version

Presented at the ESIP Winter Meeting 2014

Abstract:

The W3C PROV Ontology (PROV-O) provides an excellent model for representing, capturing and sharing provenance information on the Web. Meanwhile, the Earth and environmental science domain faces increasing demand for documenting and publishing provenance information of scientific data, methods and workflows. Currently we are still short of experience and best practices of deploying the PROV-O for Earth and environmental sciences. This presentation will discuss our experience of reusing the PROV-O for two recent research projects. The PROV-O provides three starting-points classes, Entity, Agent and Activity, and properties that relate them, as well as a number other classes and properties enriching the provenance representation. In practices one can design domain ontologies including specific classes and properties and map those classes and properties into the PROV-O. Deliberations happen in the domain ontology design and the mapping. In our first project we faced the provenance reconstruction of a report so we took definition of entities and relationships among them as the main stream of provenance capture. For the second project we shifted the main stream to provenance capture of activities because that work was designed to be associated with the workflow of data processing and information of activities is available. We hope this discussion will benefit colleagues who are also working on provenance capture and presentation.

History

DateCreated ByLink
January 5, 2014
22:26:12
Xiaogang MaDownload
January 5, 2014
22:22:30
Xiaogang MaDownload
January 5, 2014
22:16:06
Xiaogang MaDownload

Related Projects:

ECOOP LogoEmploying Cyber Infrastructure Data Technologies to Facilitate IEA for Climate Impacts in NE & CA LME's (ECO-OP)
Principal Investigator: Peter Fox
Co Investigator: Andrew Maffei
Description: The purpose of this INTEROP proposal is to facilitate the deployment of an Integrated Ecosystem Approach (IEA) to management in the Northeast and California Current Large Marine Ecosystems (LMEs). The direct result of the proposed activity will be application-level data and information enhanced communication for developing the consensus networks to define the specific components of interest to support the implementation of NOAA’s Driver-Pressure-State-Impact Response framework (DPSIR) decision framework and the cyberinfrastructure technologies to ensure data interoperability and reuse.
Global Change Information System: Information Model and Semantic Application Prototypes (GCIS-IMSAP)
Principal Investigator: Peter Fox
Description: The Tetherless World Constellation (TWC) at Rensselaer Polytechnic Institute (RPI) proposes to facilitate the vocabulary and ontology development within the context of the overall development of semantic prototypes for the National Climate Assessment (NCA) portals using a combination of environmental inter-agency collaborations in a use-case focused workshop setting, information modeling, and software developments and deployments. The prototypes are intended to provide search and browse options that inspire confidence that all relevant information has been found; data providers will be citable with detailed provenance generation. Expected deliverables are: information models, vocabulary and ontology services for vetted climate assessment settings, and search/ browse prototypes.

Related Research Areas:

Data Science
Lead Professor: Peter Fox
Description: Science has fully entered a new mode of operation. Data science is advancing inductive conduct of science driven by the greater volumes, complexity and heterogeneity of data being made available over the Internet. Data science combines of aspects of data management, library science, computer science, and physical science using supporting cyberinfrastructure and information technology. As such it is changing the way all of these disciplines do both their individual and collaborative work.

Data science is helping scienists face new global problems of a magnitude, complexity and interdisciplinary nature whose progress is presently limited by lack of available tools and a fully trained and agile workforce.

At present, there is a lack formal training in the key cognitive and skill areas that would enable graduates to become key participants in escience collaborations. The need is to teach key methodologies in application areas based on real research experience and build a skill-set.

At the heart of this new way of doing science, especially experimental and observational science but also increasingly computational science, is the generation of data.

Concepts: eScience
Ontology Engineering Environments
Lead Professor: Deborah L. McGuinness
Description: Ontology Engineering Environments
Concepts: Semantic Web
Semantic eScience
Lead Professor: Peter Fox
Description:
Science has fully entered a new mode of operation. E-science, defined as a combination of science, informatics, computer science, cyberinfrastructure and information technology is changing the way all of these disciplines do both their individual and collaborative work.
As semantic technologies have been gaining momentum in various e-Science areas (for example, W3C's new interest group for semantic web health care and life science), it is important to offer semantic-based methodologies, tools, middleware to facilitate scientific knowledge modeling, logical-based hypothesis checking, semantic data integration and application composition, integrated knowledge discovery and data analyzing for different e-Science applications.
Partially influenced by the Artificial Intelligence community, the Semantic Web researchers have largely focused on formal aspects of semantic representation languages or general-purpose semantic application development, with inadequate consideration of requirements from specific science areas. On the other hand, general science researchers are growing ever more dependent on the web, but they have no coherent agenda for exploring the emerging trends on the semantic web technologies. It urgently requires the development of a multi-disciplinary field to foster the growth and development of e-Science applications based on the semantic technologies and related knowledge-based approaches.

Concepts: eScience
X-informatics
Lead Professor: Peter Fox
Description: In the last 2-3 years, Informatics has attained greater visibility across a broad range of disciplines, especially in light of great successes in bio- and biomedical-informatics and significant challenges in the explosion of data and information resources. Xinformatics is intended to provide both the common informatics knowledge as well as how it is implemented in specific disciplines, e.g. X=astro, geo, chem, etc. Informatics' theoretical basis arises from information science, cognitive science, social science, library science as well as computer science. As such, it aggregates these studies and adds both the practice of information processing, and the engineering of information systems.
Concepts: Semantic Web, eScience