Investigations into Trust for Collaborative Information Repositories: A Wikipedia Case Study

Printer-friendly version

Abstract:

As collaborative repositories grow in popularity and use, issues concerning the quality and trustworthiness of information grow. Some current popular repositories contain contributions from a wide variety of users, many of which will be unknown to a potential end user. Additionally the content may change rapidly and information that was previously contributed by a known user may be updated by an unknown user. End users are now faced with more challenges as they evaluate how much they may want to rely on information that was generated and updated in this manner. A trust management layer has become an important requirement for the continued growth and acceptance of collaboratively developed and maintained information resources. In this paper, we will describe our initial investigations into designing and implementing an extensible trust management layer for collaborative and/or aggregated repositories of information. We leverage our work on the Inference Web explanation infrastructure and exploit and expand the Proof Markup Language to handle a simple notion of trust. Our work is designed to support representation, computation, and visualization of trust information. We have grounded our work in the setting of Wikipedia. In this paper, we present our vision, expose motivations, relate work to date on trust representation, and present a trust computation algorithm with experimental results. We also discuss some issues encountered in our work that we found interesting.

History

DateCreated ByLink
July 18, 2011
17:19:21
Jiao TaoDownload

Related Projects:

Inference Web Project LogoInference Web
Principal Investigator: Deborah L. McGuinness
Description: The Inference Web is a Semantic Web based knowledge provenance infrastructure that supports interoperable explanations of sources, assumptions, learned information, and answers as an enabler for trust. Provenance - if users (humans and agents) are to use and integrate data from unknown, uncertain, or multiple sources, they need provenance metadata for evaluation Interoperability - more systems are using varied sources and multiple information manipulation engines, thus increasing interoperability requirements Explanation/Justification - if information has been manipulated (i.e., by sound deduction or by heuristic processes), information manipulation trace information should be available Trust - if some sources are more trustworthy than others, trust ratings are desired The Inference Web consists of two important components: Proof Markup Language (PML) Ontology - Semantic Web based representation for exchanging explanations including provenance information - annotating the sources of knowledge justification information - annotating the steps for deriving the conclusions or executing workflows trust information - annotating trustworthiness assertions about knowledge and sources IW Toolkit - Web-based and standalone tools that facilitate human users to browse, debug, explain, and abstract the knowledge encoded in PML.

Related Research Areas:

Inference And Trust
Lead Professor: Deborah L. McGuinness
Description: Inference And Trust
Concepts: Semantic Web