Human-Aware Sensor Network Ontology: Semantic Support for Empirical Data Collection

Printer-friendly version

Abstract:

Significant efforts have been made to understand and document knowledge related to scientific measurements. Many of those efforts resulted in one or more high-quality ontologies that describe some aspects of scientific measurements, but not in a comprehensive and coherently integrated manner. For instance, we note that many of these high-quality ontologies are not properly aligned, and more challenging, that they have different and often conflicting concepts and approaches for encoding knowledge about empirical measurements. As a result of this lack of an integrated view, it is often challenging for scientists to determine whether any two scientific measurements were taken in semantically compatible manners, thus making it difficult to decide whether measurements should be analyzed in combination or not. In this paper, we present the Human-Aware Sensor Network Ontology that is a comprehensive alignment and integration of a sensing infrastructure ontology and a provenance ontology. HASNetO has been under development for more than one year, and has been reviewed, shared and used by multiple scientific communities. The ontology has been in use to support the data management of a number of large-scale ecological monitoring activities (observations) and empirical experiments.

History

DateCreated ByLink
October 12, 2015
19:04:21
Patrick WestDownload

Related Projects:

Jefferson Project at Lake George Project LogoE-Science Jefferson Project on Lake George (Jefferson Project)
Principal Investigator: Deborah L. McGuinness
Co Investigator: Paulo Pinheiro
Description: The Jefferson Project at Lake George is building one of the world’s most sophisticated environmental monitoring and prediction systems, which will provide scientists and the community with a real-time picture of the health of the lake. Launched in June 2013, the project aims to understand and manage multiple complex factors—including road salt incursion, storm water runoff, and invasive species—all threatening one of the world’s most pristine natural ecosystems and an economic cornerstone of the New York tourism industry. The project is a three-year, multimillion-dollar collaboration between Rensselaer Polytechnic Institute, IBM, and The FUND for Lake George. The collaboration partners expect that the world-class scientific and technology facility at the Rensselaer Darrin Fresh Water Institute at Lake George will create a new model for predictive preservation and remediation of critical natural systems in Lake George, in New York, and ultimately around the world.

Related Research Areas:

Data Science
Lead Professor: Peter Fox
Description: Science has fully entered a new mode of operation. Data science is advancing inductive conduct of science driven by the greater volumes, complexity and heterogeneity of data being made available over the Internet. Data science combines of aspects of data management, library science, computer science, and physical science using supporting cyberinfrastructure and information technology. As such it is changing the way all of these disciplines do both their individual and collaborative work.

Data science is helping scienists face new global problems of a magnitude, complexity and interdisciplinary nature whose progress is presently limited by lack of available tools and a fully trained and agile workforce.

At present, there is a lack formal training in the key cognitive and skill areas that would enable graduates to become key participants in escience collaborations. The need is to teach key methodologies in application areas based on real research experience and build a skill-set.

At the heart of this new way of doing science, especially experimental and observational science but also increasingly computational science, is the generation of data.

Concepts: eScience
Semantic eScience
Lead Professor: Peter Fox
Description:
Science has fully entered a new mode of operation. E-science, defined as a combination of science, informatics, computer science, cyberinfrastructure and information technology is changing the way all of these disciplines do both their individual and collaborative work.
As semantic technologies have been gaining momentum in various e-Science areas (for example, W3C's new interest group for semantic web health care and life science), it is important to offer semantic-based methodologies, tools, middleware to facilitate scientific knowledge modeling, logical-based hypothesis checking, semantic data integration and application composition, integrated knowledge discovery and data analyzing for different e-Science applications.
Partially influenced by the Artificial Intelligence community, the Semantic Web researchers have largely focused on formal aspects of semantic representation languages or general-purpose semantic application development, with inadequate consideration of requirements from specific science areas. On the other hand, general science researchers are growing ever more dependent on the web, but they have no coherent agenda for exploring the emerging trends on the semantic web technologies. It urgently requires the development of a multi-disciplinary field to foster the growth and development of e-Science applications based on the semantic technologies and related knowledge-based approaches.

Concepts: eScience
X-informatics
Lead Professor: Peter Fox
Description: In the last 2-3 years, Informatics has attained greater visibility across a broad range of disciplines, especially in light of great successes in bio- and biomedical-informatics and significant challenges in the explosion of data and information resources. Xinformatics is intended to provide both the common informatics knowledge as well as how it is implemented in specific disciplines, e.g. X=astro, geo, chem, etc. Informatics' theoretical basis arises from information science, cognitive science, social science, library science as well as computer science. As such, it aggregates these studies and adds both the practice of information processing, and the engineering of information systems.
Concepts: , eScience