Fundamental Analysis Powered by Semantic Web

Printer-friendly version


Conducting fundamental analysis within subsets of comparable firms has been demonstrated to provide more reliable inferences and increase the prediction quality in equity research. However, incorporating and representing both firm- specific information and common economic determinants has been widely recognized as the key challenge. This paper investigates how to leverage Semantic Web technologies to assist fundamental analysis by generating flexible and meaningful selections of comparable firms at low costs. We approach the problem by proposing Linked Open Financial Data as the data organization model and ontology modeling for knowledge representation. Results are verified in terms of efficiency with examples of quick mashups, and feasibility by adapting to existing valuation models.


DateCreated ByLink
April 21, 2011
Patrick WestDownload
April 6, 2011
Xian LiDownload

Related Research Areas:

Data Science
Lead Professor: Peter Fox
Description: Science has fully entered a new mode of operation. Data science is advancing inductive conduct of science driven by the greater volumes, complexity and heterogeneity of data being made available over the Internet. Data science combines of aspects of data management, library science, computer science, and physical science using supporting cyberinfrastructure and information technology. As such it is changing the way all of these disciplines do both their individual and collaborative work.

Data science is helping scienists face new global problems of a magnitude, complexity and interdisciplinary nature whose progress is presently limited by lack of available tools and a fully trained and agile workforce.

At present, there is a lack formal training in the key cognitive and skill areas that would enable graduates to become key participants in escience collaborations. The need is to teach key methodologies in application areas based on real research experience and build a skill-set.

At the heart of this new way of doing science, especially experimental and observational science but also increasingly computational science, is the generation of data.

Web Science
Lead Professor: Jim Hendler, Deborah L. McGuinness
Description: Web Science is the study of the World Wide Web and its impact on both society and technology, positioning the Web as an object of scientific study unto itself. Web Science recognizes the Web as a transformational, disruptive technology; its practitioners study the Web, its components, facets and characteristics. Ultimately, Web Science is about understanding the Web and anticipating how it might evolve in the future.
Concepts: Semantic Web