Dynamic Enhancement of Drug Product Labels to Support Drug Safety, Efficacy, and Effectiveness

Printer-friendly version


Out-of-date or incomplete drug product labeling information may increase the risk of otherwise preventable adverse drug events. In recognition of these concerns, the United States Federal Drug Administration (FDA) requires drug product labels to include specific information. Unfortunately, several studies have found that drug product labeling fails to keep current with the scientific literature. We present a novel approach to addressing this issue. The primary goal of this novel approach is to better meet the information needs of persons who consult the drug product label for information on a drug's efficacy, effectiveness, and safety. Using FDA product label regulations as a guide, the approach links drug claims present in drug information sources available on the Semantic Web with specific product label sections. Here we report on pilot work that establishes the baseline performance characteristics of a proof-of-concept system implementing the novel approach. Claims from three drug information sources were linked to the Clinical Studies, Drug Interactions, and Clinical Pharmacology sections of the labels for drug products that contain one of 29 psychotropic drugs. The resulting Linked Data set maps 409 efficacy/effectiveness study results, 784 drug-drug interactions, and 112 metabolic pathway assertions derived from three clinically-oriented drug information sources (ClinicalTrials.gov, the National Drug File – Reference Terminology, and the Drug Interaction Knowledge Base) to the sections of 1,102 product labels. Proof-of-concept web pages were created for all 1,102 drug product labels that demonstrate one possible approach to presenting information that dynamically enhances drug product labeling. We found that approximately one in five efficacy/effectiveness claims were relevant to the Clinical Studies section of a psychotropic drug product, with most relevant claims providing new information. We also identified several cases where all of the drug-drug interaction claims linked to the Drug Interactions section for a drug were potentially novel. The baseline performance characteristics of the proof-of-concept will enable further technical and user-centered research on robust methods for scaling the approach to the many thousands of product labels currently on the market.


DateCreated ByLink
December 28, 2012
Joanne S. LucianoDownload

Related Projects:

Health on the Web
Principal Investigator: Deborah L. McGuinness and Joanne S. Luciano
Description: The Tetherless World Constellation's Health on the Web's primary goal is to explore the next generation web technology needed to improve health.

Related Research Areas:

Data Science
Lead Professor: Peter Fox
Description: Science has fully entered a new mode of operation. Data science is advancing inductive conduct of science driven by the greater volumes, complexity and heterogeneity of data being made available over the Internet. Data science combines of aspects of data management, library science, computer science, and physical science using supporting cyberinfrastructure and information technology. As such it is changing the way all of these disciplines do both their individual and collaborative work.

Data science is helping scienists face new global problems of a magnitude, complexity and interdisciplinary nature whose progress is presently limited by lack of available tools and a fully trained and agile workforce.

At present, there is a lack formal training in the key cognitive and skill areas that would enable graduates to become key participants in escience collaborations. The need is to teach key methodologies in application areas based on real research experience and build a skill-set.

At the heart of this new way of doing science, especially experimental and observational science but also increasingly computational science, is the generation of data.

Concepts: eScience
Semantic Foundations
Lead Professor: Deborah L. McGuinness
Description: Semantic Foundations
Concepts: Semantic Web
Semantic eScience
Lead Professor: Peter Fox
Science has fully entered a new mode of operation. E-science, defined as a combination of science, informatics, computer science, cyberinfrastructure and information technology is changing the way all of these disciplines do both their individual and collaborative work.
As semantic technologies have been gaining momentum in various e-Science areas (for example, W3C's new interest group for semantic web health care and life science), it is important to offer semantic-based methodologies, tools, middleware to facilitate scientific knowledge modeling, logical-based hypothesis checking, semantic data integration and application composition, integrated knowledge discovery and data analyzing for different e-Science applications.
Partially influenced by the Artificial Intelligence community, the Semantic Web researchers have largely focused on formal aspects of semantic representation languages or general-purpose semantic application development, with inadequate consideration of requirements from specific science areas. On the other hand, general science researchers are growing ever more dependent on the web, but they have no coherent agenda for exploring the emerging trends on the semantic web technologies. It urgently requires the development of a multi-disciplinary field to foster the growth and development of e-Science applications based on the semantic technologies and related knowledge-based approaches.

Concepts: eScience