Technologies and Functionalities of the Platform for Linked Science of the Deep Carbon Observatory Community

Printer-friendly version

Abstract:

Deep Carbon Observatory-Data Science is assembling a Deep Earth Computer for the Deep Carbon Observatory (DCO). The efforts will create a fundamental change in the conduct of Carbon-related research, resting upon a 21st century data science platform, and a series of aggregate data holdings that have never existed before. Data science combines aspects of informatics, data management, library science, computer science and physical science using cyberinfrastructure and information technology. The Deep Earth Computer we build provides these functions at minimum: an concept-type repository, an ability to identify and manage all key entities, agents and activities in the platform, a repository for archiving datasets and associated metadata, collaboration tools, and an integrated portal to manage diverse content and applications, with varied access levels and privacy options. The Deep Earth Computer sets up a platform for the Linked Science of the Deep Carbon Community, that is, not only scientific assets like data and methods behind scientific settings are opened and inter-connected, but also the people, organizations, groups, samples, instruments, activities, grants, meetings, etc. are recorded and inter-connected. Such a platform will promote collaborations among DCO community members, improve the openness and reproducibility of Carbon-related researches, and facilitate accreditation to resource (including publications, datasets, instruments, etc.) contributors.

History

DateCreated ByLink
March 11, 2014
13:16:13
Xiaogang MaDownload
March 11, 2014
13:11:37
Xiaogang MaDownload

Related Projects:

DCO-DS LogoDeep Carbon Observatory Data Science (DCO-DS)
Principal Investigator: Peter Fox
Co Investigator: John S. Erickson and Jim Hendler
Description: Given this increasing data deluge, it is clear that each of the Directorates in the Deep Carbon Observatory face diverse data science and data management needs to fulfill both their decadal strategic objectives and their day-to-day tasks. This project will assess in detail the data science and data management needs for each DCO directorate and for the DCO as a whole, using a combination of informatics methods; use case development, requirements analysis, inventories and interviews.

Related Research Areas:

Data Science
Lead Professor: Peter Fox
Description: Science has fully entered a new mode of operation. Data science is advancing inductive conduct of science driven by the greater volumes, complexity and heterogeneity of data being made available over the Internet. Data science combines of aspects of data management, library science, computer science, and physical science using supporting cyberinfrastructure and information technology. As such it is changing the way all of these disciplines do both their individual and collaborative work.

Data science is helping scienists face new global problems of a magnitude, complexity and interdisciplinary nature whose progress is presently limited by lack of available tools and a fully trained and agile workforce.

At present, there is a lack formal training in the key cognitive and skill areas that would enable graduates to become key participants in escience collaborations. The need is to teach key methodologies in application areas based on real research experience and build a skill-set.

At the heart of this new way of doing science, especially experimental and observational science but also increasingly computational science, is the generation of data.

Concepts:
Semantic eScience
Lead Professor: Peter Fox
Description:
Science has fully entered a new mode of operation. E-science, defined as a combination of science, informatics, computer science, cyberinfrastructure and information technology is changing the way all of these disciplines do both their individual and collaborative work.
As semantic technologies have been gaining momentum in various e-Science areas (for example, W3C's new interest group for semantic web health care and life science), it is important to offer semantic-based methodologies, tools, middleware to facilitate scientific knowledge modeling, logical-based hypothesis checking, semantic data integration and application composition, integrated knowledge discovery and data analyzing for different e-Science applications.
Partially influenced by the Artificial Intelligence community, the Semantic Web researchers have largely focused on formal aspects of semantic representation languages or general-purpose semantic application development, with inadequate consideration of requirements from specific science areas. On the other hand, general science researchers are growing ever more dependent on the web, but they have no coherent agenda for exploring the emerging trends on the semantic web technologies. It urgently requires the development of a multi-disciplinary field to foster the growth and development of e-Science applications based on the semantic technologies and related knowledge-based approaches.

Concepts:
Web Science
Lead Professor: Jim Hendler, Deborah L. McGuinness
Description: Web Science is the study of the World Wide Web and its impact on both society and technology, positioning the Web as an object of scientific study unto itself. Web Science recognizes the Web as a transformational, disruptive technology; its practitioners study the Web, its components, facets and characteristics. Ultimately, Web Science is about understanding the Web and anticipating how it might evolve in the future.
Concepts:
X-informatics
Lead Professor: Peter Fox
Description: In the last 2-3 years, Informatics has attained greater visibility across a broad range of disciplines, especially in light of great successes in bio- and biomedical-informatics and significant challenges in the explosion of data and information resources. Xinformatics is intended to provide both the common informatics knowledge as well as how it is implemented in specific disciplines, e.g. X=astro, geo, chem, etc. Informatics' theoretical basis arises from information science, cognitive science, social science, library science as well as computer science. As such, it aggregates these studies and adds both the practice of information processing, and the engineering of information systems.
Concepts: ,