Science Data Platforms: Informatics Architectures at the Forefront

Printer-friendly version

Presented at the AGU Fall Meeting 2012

Authors:Peter Fox

Abstract:

As Earth and space science research organizations try to adapt to the pace of Web and Internet technology change, they also seek to utilize new means of managing complex data and information streams. Whether the people in these organizations serve their own needs, those of external communities, or both, the inevitable challenge to balance a stable working environment with the evolving ecosystems of highly heterogeneous data and information repositories and networks of people and organizations, remains.

In addition, as we become increasingly aware that people and other organizational entities and resources never really should have become decoupled from our data and information environments, architects are turning to an increasing set of common informatics approaches to co-design and co-evolve the needed platforms for science data.

In this contribution, we present the current state-of-the-art informatics methods for modeling, implementing and evolving data science and information architectures in the context of a new and ambitious decade-long activity; the Deep Carbon Observatory (funded by the AP Sloan Foundation). We conclude by presenting a discussion of how interworkability (cf. interoperability) may be an essential shift in thinking about the embedded role of people in science data platforms.

History

DateCreated ByLink
December 3, 2012
11:50:41
Patrick WestDownload

Related Projects:

DCO-DS LogoDeep Carbon Observatory Data Science (DCO-DS)
Principal Investigator: Peter Fox
Co Investigator: John S. Erickson and Jim Hendler
Description: Given this increasing data deluge, it is clear that each of the Directorates in the Deep Carbon Observatory face diverse data science and data management needs to fulfill both their decadal strategic objectives and their day-to-day tasks. This project will assess in detail the data science and data management needs for each DCO directorate and for the DCO as a whole, using a combination of informatics methods; use case development, requirements analysis, inventories and interviews.
SeSF Project LogoSemantic eScience Framework (SeSF)
Principal Investigator: Peter Fox
Co Investigator: Jim Hendler and Deborah L. McGuinness
Description: Over the past few years, semantic technologies have evolved and new tools are appearing. Part of the effort in this project will be to accommodate these advances in the new framework and lay out a sustainable software path for the (certain) technical advances. In addition to a generalization of the current data science interface, we will include an upper-level interface suitable for use by clearinghouses, and/or educational portals, digital libraries, and other disciplines.

Related Research Areas:

Data Science
Lead Professor: Peter Fox
Description: Science has fully entered a new mode of operation. Data science is advancing inductive conduct of science driven by the greater volumes, complexity and heterogeneity of data being made available over the Internet. Data science combines of aspects of data management, library science, computer science, and physical science using supporting cyberinfrastructure and information technology. As such it is changing the way all of these disciplines do both their individual and collaborative work.

Data science is helping scienists face new global problems of a magnitude, complexity and interdisciplinary nature whose progress is presently limited by lack of available tools and a fully trained and agile workforce.

At present, there is a lack formal training in the key cognitive and skill areas that would enable graduates to become key participants in escience collaborations. The need is to teach key methodologies in application areas based on real research experience and build a skill-set.

At the heart of this new way of doing science, especially experimental and observational science but also increasingly computational science, is the generation of data.

Concepts: eScience
Semantic eScience
Lead Professor: Peter Fox
Description:
Science has fully entered a new mode of operation. E-science, defined as a combination of science, informatics, computer science, cyberinfrastructure and information technology is changing the way all of these disciplines do both their individual and collaborative work.
As semantic technologies have been gaining momentum in various e-Science areas (for example, W3C's new interest group for semantic web health care and life science), it is important to offer semantic-based methodologies, tools, middleware to facilitate scientific knowledge modeling, logical-based hypothesis checking, semantic data integration and application composition, integrated knowledge discovery and data analyzing for different e-Science applications.
Partially influenced by the Artificial Intelligence community, the Semantic Web researchers have largely focused on formal aspects of semantic representation languages or general-purpose semantic application development, with inadequate consideration of requirements from specific science areas. On the other hand, general science researchers are growing ever more dependent on the web, but they have no coherent agenda for exploring the emerging trends on the semantic web technologies. It urgently requires the development of a multi-disciplinary field to foster the growth and development of e-Science applications based on the semantic technologies and related knowledge-based approaches.

Concepts: eScience