A Mark-up Language for Solar Terrestrial Observations and Measurements

Printer-friendly version

Presented at the AGU Fall Meeting 2012

Abstract:

We introduce the Solar Terrestrial Observations and Measurements (STOM) Ontology, an extension to the Virtual Solar Terrestrial Observatory (VSTO) Ontology, that introduces a profile of the Observations and Measurements model (ISO 19156) for the solar-terrestrial community. The VSTO Ontology is the semantic backbone of the VSTO portal, enabling semantic discovery of solar terrestrial data products. User feedback on the VSTO Portal has highlighted a community desire for access to observation-level and provenance metadata about data records accessible through the VSTO Portal and Web services. The STOM Ontology has been designed to allow for the semantic representation of observational metadata and to provide a mechanism to describe data records generated from an observation or derived from other data records. The provenance trace of a published data record to its primary sources may then be encoded using one of several common provenance languages and made available to VSTO Portal users.

History

DateCreated ByLink
December 3, 2012
03:17:40
Stephan ZednikDownload
November 29, 2012
15:21:59
Stephan ZednikDownload
November 29, 2012
15:09:15
Stephan ZednikDownload

Related Projects:

SeSF Project LogoSemantic eScience Framework (SeSF)
Principal Investigator: Peter Fox
Co Investigator: Jim Hendler and Deborah L. McGuinness
Description: Over the past few years, semantic technologies have evolved and new tools are appearing. Part of the effort in this project will be to accommodate these advances in the new framework and lay out a sustainable software path for the (certain) technical advances. In addition to a generalization of the current data science interface, we will include an upper-level interface suitable for use by clearinghouses, and/or educational portals, digital libraries, and other disciplines.
DCO-DS LogoVirtual Solar Terrestrial Observatory (VSTO)
Principal Investigator: Peter Fox
Co Investigator: Deborah L. McGuinness
Description: VSTO is a collaborative project between the High Altitude Observatory and Scientific Computing Division of the National Center for Atmospheric Research and McGuinness Associates. VSTO is funded by a grant from the National Science Foundation, Computer and Information Science and Engineering (CISE) in the Shared Cyberinfrastructure (SCI) division.

Related Research Areas:

Data Science
Lead Professor: Peter Fox
Description: Science has fully entered a new mode of operation. Data science is advancing inductive conduct of science driven by the greater volumes, complexity and heterogeneity of data being made available over the Internet. Data science combines of aspects of data management, library science, computer science, and physical science using supporting cyberinfrastructure and information technology. As such it is changing the way all of these disciplines do both their individual and collaborative work.

Data science is helping scienists face new global problems of a magnitude, complexity and interdisciplinary nature whose progress is presently limited by lack of available tools and a fully trained and agile workforce.

At present, there is a lack formal training in the key cognitive and skill areas that would enable graduates to become key participants in escience collaborations. The need is to teach key methodologies in application areas based on real research experience and build a skill-set.

At the heart of this new way of doing science, especially experimental and observational science but also increasingly computational science, is the generation of data.

Concepts: eScience
Knowledge Provenance
Lead Professor: Deborah L. McGuinness
Description: Knowledge Provenance
Concepts: Provenance,
Semantic eScience
Lead Professor: Peter Fox
Description:
Science has fully entered a new mode of operation. E-science, defined as a combination of science, informatics, computer science, cyberinfrastructure and information technology is changing the way all of these disciplines do both their individual and collaborative work.
As semantic technologies have been gaining momentum in various e-Science areas (for example, W3C's new interest group for semantic web health care and life science), it is important to offer semantic-based methodologies, tools, middleware to facilitate scientific knowledge modeling, logical-based hypothesis checking, semantic data integration and application composition, integrated knowledge discovery and data analyzing for different e-Science applications.
Partially influenced by the Artificial Intelligence community, the Semantic Web researchers have largely focused on formal aspects of semantic representation languages or general-purpose semantic application development, with inadequate consideration of requirements from specific science areas. On the other hand, general science researchers are growing ever more dependent on the web, but they have no coherent agenda for exploring the emerging trends on the semantic web technologies. It urgently requires the development of a multi-disciplinary field to foster the growth and development of e-Science applications based on the semantic technologies and related knowledge-based approaches.

Concepts: eScience