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Definitions
● Independent variables/predictors/covariates: Input variables used to predict or explain the 

outcome; the X variables in a model.

● Dependent variable/target/response: The output variable being predicted or explained; the Y 
variable in a model.

● Model: A mathematical function that maps input variables to output predictions: 
Y = f(X) + ε (where ε is a mean-zero random error term)

● Feature space: The n-dimensional space where each dimension represents a feature/predictor, and 
each data point is a location in this space.

● Prediction error/residual: The difference between the observed value and the predicted value: 
e = y - ŷ
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62 3. Linear Regression
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FIGURE 3.1. For the Advertising data, the least squares fit for the regression
of sales onto TV is shown. The fit is found by minimizing the sum of squared
errors. Each grey line segment represents an error, and the fit makes a compro-
mise by averaging their squares. In this case a linear fit captures the essence of
the relationship, although it is somewhat deficient in the left of the plot.

Let ŷi = β̂0 + β̂1xi be the prediction for Y based on the ith value of X .
Then ei = yi− ŷi represents the ith residual—this is the difference between

residual
the ith observed response value and the ith response value that is predicted
by our linear model. We define the residual sum of squares (RSS) as

residual sum
of squares

RSS = e21 + e22 + · · ·+ e2n,

or equivalently as

RSS = (y1− β̂0− β̂1x1)
2+(y2− β̂0− β̂1x2)

2+ . . .+(yn− β̂0− β̂1xn)
2. (3.3)

The least squares approach chooses β̂0 and β̂1 to minimize the RSS. Using
some calculus, one can show that the minimizers are

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
,

β̂0 = ȳ − β̂1x̄,

(3.4)

where ȳ ≡ 1
n

∑n
i=1 yi and x̄ ≡ 1

n

∑n
i=1 xi are the sample means. In other

words, (3.4) defines the least squares coefficient estimates for simple linear
regression.
Figure 3.1 displays the simple linear regression fit to the Advertising

data, where β̂0 = 7.03 and β̂1 = 0.0475. In other words, according to

x-axis: independent numeric variable
y-axis: dependent numeric variable

Look for:
- Trend? direction?
- are points tightly grouped?

Goal: predict continuous response variable

x-axis: numeric variable
y-axis: numeric variable

Look for:
- structure: groups? group 

separation/boundaries?

Goal: predict class label

Regression Classification
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Accurate vs. Precise 

credit: climatica.org.uk (offline)

Accurate vs. Precise

18

http://climatica.org.uk/climate-science-information/uncertainty
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Regression –
Predicting Continuous Outcomes
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Regression
● Supervised learning for continuous targets
● Models relationship between variables
● Produces numeric predictions

When to Use Regression?
● Target variable is continuous (price, temperature, sales)
● To understand variable relationships / forecast future values
e.g. Price prediction, demand forecasting

6
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Linear Regression
● Fitting covariate and response data to a line is referred to as linear 

regression.

Definitions
Coefficient: numerical value that quantifies the relationship between predictor and response
Intercept: The expected value of the response variable when the value of the predictor variable is 0.
Slope: the average increase in Y associated with a one-unit increase in X.

Equation of line: !𝑦 = $𝛽! +$𝛽"𝑥 + 𝜖
β₀: intercept (Y when X = 0) • β₁: slope (change in Y per unit change in X) • ε: error term

● Multiple methods for finding the best fit Line.

7
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Some assumptions for linear regression

● Linearity: Relationship between predictor and response is linear

● Independence: Observations are independent (independently measured/sampled)

● No multicollinearity: Predictors not highly correlated

● Homoscedasticity: Constant variance of errors, i.e. errors/uncertainties are evenly 

spread out over range of inputs

● Normality: Errors are normally distributed

8
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Least Squares Method

● Minimize sum of squared residuals

○ Minimize Σ(yᵢ - ŷᵢ)²

● Also called Ordinary Least Squares (OLS)

● Penalizes large errors more heavily

● Produces unique solution: line that minimizes total squared vertical distances from 

points

9
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Equation of line: !𝑦 = $𝛽! +$𝛽"𝑥

Let n be a positive integer. For a given data (x1,y1), ..., (xn,yn) ∈ ℝ×ℝ, 
- we obtain the intercept 𝛽0 and slope 𝛽1 using the least squares method.
- Residual Sum of Squares (RSS), the ith residual 

Or

62 3. Linear Regression
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i=1(xi − x̄)2
,
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Least Squares Method
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RSS	can	be	re-written	as:

L = ∑!"#$ (𝑦! − 6𝛽% −6𝛽#𝑥!)&

Sum of squared distances between (𝑥#, 𝑦#) and (𝑥# ,$𝛽!+$𝛽"𝑥# ) over 𝑖 = 1,...,n 

Least Squares Method

&𝑦!
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L = *
!"#

$
(𝑦! − -𝛽% −-𝛽#𝑥!)&

• We partially differentiate L by 𝛽0 and 𝛽1 and let them be equal to zero, we obtain the following equations:

$%
$&''

= −2 ∑#(") 𝑦# − $𝛽! −$𝛽"𝑥# = 0 Eq(1)

$%
$ !"!

= −2 ∑#(") 𝑥# 𝑦# − $𝛽! −$𝛽"𝑥# = 0 Eq(2)

Where the partial derivative is calculated by differentiating each variable and regarding the other variables as constants. In this 
case, 𝛽# and 𝛽$ are regarded as constants when differentiating L by 𝛽$ and 𝛽# respectively. 

Least Squares Method
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• By solving Eq (1) and Eq (2) when: 
∑!"#$ (𝑥! − 𝑥̅)& ≠ 0 Eq(3)

i.e., 𝑥# = 𝑥& = ⋯ = 𝑥( is not true.

where: 𝑥̅ is the mean of X and 5𝑦 is the mean of Y.

• We can obtain:
/𝛽" =

∑)*+
, (-).-̅)(1).21)
∑)*+
, (-).-̅)

Eq(4)

/𝛽! = 0𝑦 - /𝛽"𝑥̅ Eq(5)

Full derivation: https://www.youtube.com/watch?v=ewnc1cXJmGA

Least Squares Method

Equation of line: &𝑦 = 6𝛽% + 6𝛽#𝑥

https://www.youtube.com/watch?v=ewnc1cXJmGA
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True relationship between X and Y: Y =2 + 3X + ε

- Where 𝜖 is a mean-zero random error

64 3. Linear Regression
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FIGURE 3.3. A simulated data set. Left: The red line represents the true rela-
tionship, f(X) = 2 + 3X, which is known as the population regression line. The
blue line is the least squares line; it is the least squares estimate for f(X) based
on the observed data, shown in black. Right: The population regression line is
again shown in red, and the least squares line in dark blue. In light blue, ten least
squares lines are shown, each computed on the basis of a separate random set of
observations. Each least squares line is different, but on average, the least squares
lines are quite close to the population regression line.

two lines in a simple simulated example. We created 100 random Xs, and
generated 100 corresponding Y s from the model

Y = 2 + 3X + ϵ, (3.6)

where ϵ was generated from a normal distribution with mean zero. The
red line in the left-hand panel of Figure 3.3 displays the true relationship,
f(X) = 2 + 3X , while the blue line is the least squares estimate based
on the observed data. The true relationship is generally not known for
real data, but the least squares line can always be computed using the
coefficient estimates given in (3.4). In other words, in real applications,
we have access to a set of observations from which we can compute the
least squares line; however, the population regression line is unobserved.
In the right-hand panel of Figure 3.3 we have generated ten different data
sets from the model given by (3.6) and plotted the corresponding ten least
squares lines. Notice that different data sets generated from the same true
model result in slightly different least squares lines, but the unobserved
population regression line does not change.
At first glance, the difference between the population regression line and

the least squares line may seem subtle and confusing. We only have one
data set, and so what does it mean that two different lines describe the
relationship between the predictor and the response? Fundamentally, the

Dark Red: true relationship

Dark Blue: least squares regression line

Light Blue: least squares regression lines 
for multiple new random datasets 
generated using the same model

*Remember, we are estimating models based on samples to learn about populations…

Linear Models are Estimates
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Evaluating Linear Models
62 3. Linear Regression
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FIGURE 3.1. For the Advertising data, the least squares fit for the regression
of sales onto TV is shown. The fit is found by minimizing the sum of squared
errors. Each grey line segment represents an error, and the fit makes a compro-
mise by averaging their squares. In this case a linear fit captures the essence of
the relationship, although it is somewhat deficient in the left of the plot.

Let ŷi = β̂0 + β̂1xi be the prediction for Y based on the ith value of X .
Then ei = yi− ŷi represents the ith residual—this is the difference between

residual
the ith observed response value and the ith response value that is predicted
by our linear model. We define the residual sum of squares (RSS) as

residual sum
of squares

RSS = e21 + e22 + · · ·+ e2n,

or equivalently as

RSS = (y1− β̂0− β̂1x1)
2+(y2− β̂0− β̂1x2)

2+ . . .+(yn− β̂0− β̂1xn)
2. (3.3)

The least squares approach chooses β̂0 and β̂1 to minimize the RSS. Using
some calculus, one can show that the minimizers are

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
,

β̂0 = ȳ − β̂1x̄,

(3.4)

where ȳ ≡ 1
n

∑n
i=1 yi and x̄ ≡ 1

n

∑n
i=1 xi are the sample means. In other

words, (3.4) defines the least squares coefficient estimates for simple linear
regression.
Figure 3.1 displays the simple linear regression fit to the Advertising

data, where β̂0 = 7.03 and β̂1 = 0.0475. In other words, according to

• Sales vs. TV ad spending
• Sales in 1000s of units
• TV ad spending in 1000s 

of $
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Evaluating Linear Models68 3. Linear Regression

then we can infer that there is an association between the predictor and the
response. We reject the null hypothesis—that is, we declare a relationship
to exist between X and Y—if the p-value is small enough. Typical p-value
cutoffs for rejecting the null hypothesis are 5 or 1%. When n = 30, these
correspond to t-statistics (3.14) of around 2 and 2.75, respectively.

Coefficient Std. error t-statistic p-value
Intercept 7.0325 0.4578 15.36 < 0.0001
TV 0.0475 0.0027 17.67 < 0.0001

TABLE 3.1. For the Advertising data, coefficients of the least squares model
for the regression of number of units sold on TV advertising budget. An increase
of $1,000 in the TV advertising budget is associated with an increase in sales by
around 50 units (Recall that the sales variable is in thousands of units, and the
TV variable is in thousands of dollars).

Table 3.1 provides details of the least squares model for the regression of
number of units sold on TV advertising budget for the Advertising data.
Notice that the coefficients for β̂0 and β̂1 are very large relative to their
standard errors, so the t-statistics are also large; the probabilities of seeing
such values if H0 is true are virtually zero. Hence we can conclude that
β0 ̸= 0 and β1 ̸= 0.4

3.1.3 Assessing the Accuracy of the Model

Once we have rejected the null hypothesis (3.12) in favor of the alternative
hypothesis (3.13), it is natural to want to quantify the extent to which the
model fits the data. The quality of a linear regression fit is typically assessed
using two related quantities: the residual standard error (RSE) and the R2

R2

statistic.
Table 3.2 displays the RSE, the R2 statistic, and the F-statistic (to be

described in Section 3.2.2) for the linear regression of number of units sold
on TV advertising budget.

Residual Standard Error

Recall from the model (3.5) that associated with each observation is an
error term ϵ. Due to the presence of these error terms, even if we knew the
true regression line (i.e. even if β0 and β1 were known), we would not be
able to perfectly predict Y from X . The RSE is an estimate of the standard

4In Table 3.1, a small p-value for the intercept indicates that we can reject the null
hypothesis that β0 = 0, and a small p-value for TV indicates that we can reject the null
hypothesis that β1 = 0. Rejecting the latter null hypothesis allows us to conclude that
there is a relationship between TV and sales. Rejecting the former allows us to conclude
that in the absence of TV expenditure, sales are non-zero.

1.1 Values of coefficients >> their Std. errors

1.2. High t-statistic

1.3. Low p-value

Hypothesis (more TV ads à more sales)

H0 : There is no relationship between X and Y 

Ha : There is some relationship between X and Y 

Reject the null hypothesis!

1. Assessing the accuracy of coefficient estimates

𝑡 =
:β#

𝑆𝐸(>β#)
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Evaluating Linear Models
2. Assessing the accuracy of the model

Residual Standard Error
• Mean sales ≈ 14,000 units

• RSE = 3.26 = 3,260 units
good/bad?

R2

• measures the proportion of the variability in Y that can 
be explained using X

• has a value between 0,1

3.1 Simple Linear Regression 69

Quantity Value
Residual standard error 3.26
R2 0.612
F-statistic 312.1

TABLE 3.2. For the Advertising data, more information about the least squares
model for the regression of number of units sold on TV advertising budget.

deviation of ϵ. Roughly speaking, it is the average amount that the response
will deviate from the true regression line. It is computed using the formula

RSE =

√
1

n− 2
RSS =

√√√√ 1

n− 2

n∑

i=1

(yi − ŷi)2. (3.15)

Note that RSS was defined in Section 3.1.1, and is given by the formula

RSS =
n∑

i=1

(yi − ŷi)
2. (3.16)

In the case of the advertising data, we see from the linear regression
output in Table 3.2 that the RSE is 3.26. In other words, actual sales in
each market deviate from the true regression line by approximately 3,260
units, on average. Another way to think about this is that even if the
model were correct and the true values of the unknown coefficients β0

and β1 were known exactly, any prediction of sales on the basis of TV
advertising would still be off by about 3,260 units on average. Of course,
whether or not 3,260 units is an acceptable prediction error depends on the
problem context. In the advertising data set, the mean value of sales over
all markets is approximately 14,000 units, and so the percentage error is
3,260/14,000 = 23%.
The RSE is considered a measure of the lack of fit of the model (3.5) to

the data. If the predictions obtained using the model are very close to the
true outcome values—that is, if ŷi ≈ yi for i = 1, . . . , n—then (3.15) will
be small, and we can conclude that the model fits the data very well. On
the other hand, if ŷi is very far from yi for one or more observations, then
the RSE may be quite large, indicating that the model doesn’t fit the data
well.

R2 Statistic

The RSE provides an absolute measure of lack of fit of the model (3.5)
to the data. But since it is measured in the units of Y , it is not always
clear what constitutes a good RSE. The R2 statistic provides an alternative
measure of fit. It takes the form of a proportion—the proportion of variance
explained—and so it always takes on a value between 0 and 1, and is
independent of the scale of Y .
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70 3. Linear Regression

To calculate R2, we use the formula

R2 =
TSS− RSS

TSS
= 1− RSS

TSS
(3.17)

where TSS =
∑

(yi − ȳ)2 is the total sum of squares, and RSS is defined
total sum of
squaresin (3.16). TSS measures the total variance in the response Y , and can be

thought of as the amount of variability inherent in the response before the
regression is performed. In contrast, RSS measures the amount of variability
that is left unexplained after performing the regression. Hence, TSS−RSS
measures the amount of variability in the response that is explained (or
removed) by performing the regression, and R2 measures the proportion
of variability in Y that can be explained using X . An R2 statistic that is
close to 1 indicates that a large proportion of the variability in the response
has been explained by the regression. A number near 0 indicates that the
regression did not explain much of the variability in the response; this might
occur because the linear model is wrong, or the inherent error σ2 is high,
or both. In Table 3.2, the R2 was 0.61, and so just under two-thirds of the
variability in sales is explained by a linear regression on TV.
The R2 statistic (3.17) has an interpretational advantage over the RSE

(3.15), since unlike the RSE, it always lies between 0 and 1. However, it can
still be challenging to determine what is a good R2 value, and in general,
this will depend on the application. For instance, in certain problems in
physics, we may know that the data truly comes from a linear model with
a small residual error. In this case, we would expect to see an R2 value that
is extremely close to 1, and a substantially smallerR2 value might indicate a
serious problem with the experiment in which the data were generated. On
the other hand, in typical applications in biology, psychology, marketing,
and other domains, the linear model (3.5) is at best an extremely rough
approximation to the data, and residual errors due to other unmeasured
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The R2 statistic is a measure of the linear relationship between X and

Y . Recall that correlation, defined as
correlation

Cor(X,Y ) =

∑n
i=1(xi − x)(yi − y)√∑n
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assess the fit of the linear model. In fact, it can be shown that in the simple
linear regression setting, R2 = r2. In other words, the squared correlation
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Exercise: Linear models with the NY Housing Dataset

18

## read dataset
NY_House_Dataset <- read_csv("~/Courses/Data 
Analytics/Spring26/datasets/NY-House-Dataset.csv")

dataset <- NY_House_Dataset

lmod1 <- lm(log10(PRICE)~log10(PROPERTYSQFT), data = 
dataset)

## print model output
summary(lmod1)

## scatter plot of 2 variables with best fit line
plot(log10(PRICE)~log10(PROPERTYSQFT), data = dataset)
abline(lmod1)

Code: https://rpi.box.com/s/ysgt4r7ttajlygdxh63v72lfs4besypt

https://rpi.box.com/s/ysgt4r7ttajlygdxh63v72lfs4besypt
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k-Nearest Neighbors
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k-Nearest Neighbors

● Supervised learning for categorical targets

● Binary classification: 

○ Two classes (Yes/No, Cat/NotACat)

○ Multi-class: More than two classes (Low/Medium/High)

e.g. email spam detection, disease diagnosis, customer segmentation
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k-Nearest Neighbors

● In the figure a dataset  is shown consisting 6 blue and 6 orange 
observations. 

● Our goal is to make a prediction for the point labeled by the X 

● Suppose we choose k=3, then KNN will first identify the three 
observations that are closest to the X as shown in the figure. 

● This neighborhood is shown as a circle. It consist of 2 blue points and 
1 orange point, resulting in estimated probabilities of 2/3 for the blue 
class and 1/3 for the orange class. 

● Hence, kNN will predict that the X belongs to the blue class.

k = 3 neighborhood and decision boundaries
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k-Nearest Neighbors

Pros:
● Simple and intuitive
● No training phase (lazy learning)
● Non-parametric (no assumptions about data)
● Effective with sufficient data

Cons:
● Computationally expensive for large datasets
● Sensitive to feature scaling
● Requires choosing k
● Storage intensive (must keep all training data)
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How It Works

○ Root node: starting point • Internal nodes: decision points (feature tests) • 
Branches: outcomes of tests • Leaf nodes: final predictions (class labels)

○ Recursively split data based on features • Each split maximizes 
information gain • Continue until stopping criteria met • Pure leaf nodes or 
maximum depth reached
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Exercise: kNN with Iris dataset
iris.data <- iris

s.train <- sample(150,100) 

# creat training and testing sets 
iris.train <-iris[s.train,]
iris.test <-iris[-s.train,]

## kNN Model
knn.predicted <- knn(iris.train[,1:4], iris.test[,1:4], 
iris.train[,5], k=3)

## confusion matrix/contingency table
table(knn.predicted, iris.test[,5], 
dnn=list('predicted','actual')) Code: https://rpi.box.com/s/ysgt4r7ttajlygdxh63v72lfs4besypt

https://rpi.box.com/s/ysgt4r7ttajlygdxh63v72lfs4besypt
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Decision Trees

25
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Decision tree classifier Decision tree classifier

41

More on this later in Group 2 …

More on this later in Group 2 ... 
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• A decision tree has a hierarchical structure with “nodes” and “directed edges”

• The top node is defined as the “root node” and the nodes at the bottom are called as “leaf 
nodes”

• Nodes that are neither root node nor the leaf nodes are identified as “internal nodes” in the 
decision tree.

• There is a “class label” or numerical value associated with each leaf node

• Decision trees can be applied to both regression and classification problems

Decision Tree



Tetherless World ConstellationTetherless World Constellation 28

Decision Tree -
Regression

e.g. predicting a player’s figure salary 
(order of magnitude) based on their 
experience, stats, etc.

Reference/Resources: Introduction to Statistical 
Learning with R -7 Edition: Chapter 8 
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Decision Tree – Classification

e.g. predicting a flower’s species based on the 
measurements of its petals, sepals, etc.
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• When we implement decision trees for classification, the idea is to split the data into subsets. 
So that each subset belongs to one particular class.

• In other words, splitting the data into regions, that are separated by decision boundaries, 
where each region’s samples have only one class. 

• Classification decisions are made by traversing the decision tree

• Traversing starts from the root node (from the top of the tree). 

• When a leaf node is reached through traversing, the category of the leaf node 
determines the classification.

Decision Tree - Classification
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• The depth is measured from the root node and the depth at the root node is zero. 

• The depth of the decision tree: Tree Depth is calculated by counting the number of edges in 
the longest path from the root node to a leaf node.

• Number of nodes in the decision tree determine the size of the tree. 

• The decision tree constructing algorithm is referred to as a tree induction algorithm. 

Decision Tree



Tetherless World ConstellationTetherless World Constellation 32

Pros: 

• Trees can be displayed graphically, and easily interpreted even non-experts (especially if the tree is small) 
can understand. 
• Some people believe decision trees are more closely mirror human decision-making. 

Cons: 

• Trees generally do not have the same level of predictive accuracy as some of the other regression and 
classification approaches.

•Trees can be very non-robust. In other words, a small changes in the data can cause a large change in the 
final estimated tree 

Decision Tree
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Exercise: Decision Tree with Iris dataset
iris.data <- iris

s.train <- sample(150,100) 

# creat training and testing sets 
iris.train <-iris[s.train,]
iris.test <-iris[-s.train,]

# Decision tree model 
tree.model <- rpart(Species~., iris.train, method = "class")

#plotting the decision tree model using rpart.plot() function 
rpart.plot(tree.model)

tree.model.predicted <- predict(tree.model, iris.test, type = "class")

## confusion matrix/contingency table
table(tree.model.predicted, iris.test$Species, dnn=list('predicted','actual'))

Code: https://rpi.box.com/s/2wg4obl8ajrc1qm12rirdffylz96yn1d

https://rpi.box.com/s/2wg4obl8ajrc1qm12rirdffylz96yn1d
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Random Forest(s)
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Random Forest
● Random Forest is based on decision trees.

● In Random Forest, a large number of trees are grown, where each tree is based on a bootstrap 
sample (random sample taken during training).

● Then, the predictions from all the trees are averaged (regression) or a majority vote is taken 
(classification) to get the final predictions.

● The original algorithm was created in 1995 by Tin Kam Ho.

● An extension of the algorithm was developed by Leo Breiman and Adele Cutler, who registered 
"Random Forests" as a trademark in 2006.

http://www.stat.berkeley.edu/~breiman/RandomForests/

35

http://www.stat.berkeley.edu/~breiman/RandomForests/


Tetherless World Constellation

Bootstrap Aggregating (Bagging)
● Build multiple decision trees

○ Each tree trained on random subset of data
○ Each split considers random subset of features
○ Final prediction: majority vote (classification) or average (regression)

● Reduces variance through averaging
○ Less prone to overfitting
○ More stable predictions
○ Captures different patterns with different trees

● Sample with replacement



Tetherless World ConstellationTetherless World Constellation 37

Random Forest

Image Resource: https://commons.wikimedia.org/wiki/File:Random_forest_diagram_complete.png
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Random Forest

Image/ Photo Credit: Albert A. Montillo 
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When to Stop splitting the nodes?
There are several criteria that can be used to determine the when a node shouldn’t be 
split into subsets:

• The induction algorithm can stop expanding a node when all samples in the node have the same 
class label. 

• Since getting pure subsets is difficult to archive with real world data, the stopping criteria can be modified 
to a certain percentage of the samples in the node. i.e 95% of have the same class label.

• The algorithm can stop expanding a node when the number of samples in the node falls below a certain 
minimum number.

• The induction algorithm can stop expanding a node when the improvement in impurity measure is way too 
small to measure (too small to make a much difference in classification result). 

• The algorithm can also stop expanding when it reaches maximum tree-depth. 
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Impurity Measure
• The decision tree will select the split that minimize the Gini-index. 

• Besides the Gini-index, there are other impurity measures available such as:

- entropy or information gain 
- misclassification rate 

• The decision tree will test all variables to determine the best way to split a node using a purity 
measure such as Gini-index to compare different possibilities 

• Tree induction algorithms repeatedly split nodes to get more and more homogeneous 
subsets.
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Random Forest

Pros
● Higher accuracy than single tree
● Handles large datasets efficiently
● Estimates feature importance
● Handles missing values well

Cons
● Speed - with larger more complex datasets)
● Interpretability – many trees are difficult (may be impossible) to explain or visualize collectively
● May overfit with noisy datasets
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Errors in Classification
● In classification, the model’s output is the predicted class label for the input variables and the true class 

label is the target.

● If the predicted class label is different from the actual class label (true class) then there is an 
error with that classification.

● The error rate is the percentage of errors made over the entire dataset.

● Error rate is also known as the misclassification rate or simply called the error.

Error  = (Number of Misclassifications)/(Total Number of Samples)

Accuracy  = (Number of Correct Classifications)/(Total Number of Samples)
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Confusion Matrix / Contingency Table
e.g. 

● Evaluating a kNN model trained on 2/3 of observations (100) in the Iris dataset and tested 
on the remaining 50

Error  = 2/50 = 0.04 = 4%

Accuracy  = 48/50 = 0.96 = 96%
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Exercise: Decision Tree with Iris dataset
iris.data <- iris

s.train <- sample(150,100) 

# creat training and testing sets 
iris.train <-iris[s.train,]
iris.test <-iris[-s.train,]

## Random Forest Model
rf.model <- randomForest(Species~., data=iris.train, proximity=TRUE)

## predict class labels
rf.predicted <- predict(rf.model, iris.test)

## confusion matrix/contingency table
table(rf.predicted,iris.test$Species, dnn=list('predicted','actual'))

Code: https://rpi.box.com/s/ysgt4r7ttajlygdxh63v72lfs4besypt

https://rpi.box.com/s/ysgt4r7ttajlygdxh63v72lfs4besypt
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Next Class: Friday Feb. 6th

Naïve Bayes + Lab 2
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Thanks!
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