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Support Vector Machines
● Rationale 

● Hyperplanes, Margins and Support vectors

● Classification using SVM

● Linear Separability of classes (or not)

● Soft Margin SVM

● Kernels
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Rationale
● If data points in p-dimensional space, belonging to 2 different classes can be separated by a (p-1)-dimensional 

hyperplane, this hyperplane can be used as a linear classifier.

● Example: in 2d space, a line could be linear classifier..

● The hyperplane representing the largest separation or “margin” 
between the classes maximizes the distance to the nearest data point
from each class.

● SVM utilizes the maximum margin hyperplane to solve classification, 
regression and outlier detection problems.
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Hyperplane
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• A hyperplane is a plane of dimension p-1 in a p dimensional space

• “a flat hypersurface, a subspace whose dimension is one less than that of 
the ambient space”

• “any codimension - 1 vector subspace of a vector space”

https://en.wikipedia.org/wiki/Hyperplane
https://mathworld.wolfram.com/Hyperplane.html

https://en.wikipedia.org/wiki/Hyperplane
https://mathworld.wolfram.com/Hyperplane.html


Tetherless World Constellation

Hyperplanes
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Margin
● The distance between the hyperplane (decision boundary) and the nearest points from 

each class.

● larger margin = greater confidence in the classifier

● SVMs find the hyperplane that maximizes the margin

○ “maximum-margin classifiers”
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Support Vectors
● The points closest to the decision boundary.

● They determine the position and orientation of the 
hyperplane, i.e. define the decision boundary.

● They are used to calculate the margin.

Hyperplane:
𝑊!𝑋 − 𝑏 = 0

W: weight vector
X: input vector
b: bias term
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Support Vector Machines
● Given training dataset of points (xi,yi) where yi is equal to 1 or -1

* Find the maximum-margin-hyperplane that divides the points xi for which yi = 1 from the 
points for which yi = -1

Hyperplane:
𝑊!𝑋 − 𝑏 = 0

Distance from point to line:

𝑑 =
𝑤 * 𝑥 + 𝑏

𝑤

Distance from hyperplane H1 to hyperplane H2 :
2
𝑊
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Support Vector Machines
Distance from hyperplane H1 to hyperplane H2 :

2
𝑊

To find W and b:

* The optimization problem is solved using gradient descent, quadratic 
programming, etc.
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Classification with SVM
● Once the weights W and bias term b are found, classification is 

obtained by:

sign(𝑊!𝑋 − 𝑏)

Where sign() is function that returns +1 or -1
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Linear Separability
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Soft-
margins…

Non-linearity or 
transformation
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Soft-margin SVM
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Allow for some margin violations 
controlled by the parameter C, the 
regularization parameter

Top left: Highest C value, decreasing C narrows the margin
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Non-linearity
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What to do??
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Non-linearity (ideal example)
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Transform the input:

• Add a new dimension where the data are 
linearly separable

If are dataset contains variables X1, X2:
we can add X3 = f(X1,X2)

e.g. X3 = (X1²+ X2²)^(1/2)

- Computationally expensive!
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Less ideally…
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The Kernel Trick
● Instead of computing 𝐰!𝐱 , we compute:

𝑓 𝐱 =)
./0

1

𝛼. 𝐱, 𝐱. + 𝑏

where 𝐱, 𝐱" is the dot product of a new vector 𝐱 and all training samples 𝐱"

● We replace the dot product with a kernel function:

𝑓 𝐱 =)
./0

1

𝛼. 𝐾 𝐱., 𝐱 + 𝑏

Where 𝐾 𝐱" , 𝐱 is the kernel function and 𝛼" is a weight coefficient
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The Kernel Trick

● Kernel Functions:

1. Linear Kernel

𝐾 𝐱! 𝐱" = 𝐱!#𝐱"

2. Polynomial Kernel

𝐾 𝐱! 𝐱" = (𝐱.!𝐱6 + 𝑐)7

3. Radial Basis Function (RBF) Kernel

𝐾 𝐱! 𝐱" = exp −𝛾 ∣∣ 𝐱! − 𝐱" ∣∣$
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Parameter Gamma (𝛾) in RBF
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𝛾 = 0.1 𝛾 = 10 𝛾 = 100
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Many Kernels
● Polynomial Kernel
● Gaussian Kernel
● Gaussian RBF Kernel
● Laplace RBF Kernel
● Hyperbolic Tangent Kernel
● Sigmoid Kernel
● Bessel function of first kind Kernel
● ANOVA radial basis Kernel
● Linear Splines Kernel
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Applying Kernels
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Polynomial Kernel Radial Kernel
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In-class exercise
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https://rpi.box.com/s/mgyeuj7ncv3rmxfy74n0yzc57ctiy9or

https://rpi.box.com/s/mgyeuj7ncv3rmxfy74n0yzc57ctiy9or
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Thanks!
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