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Definitions

e Dimensions of a dataset: While a tabular dataset has two dimensions (or axes), which
are its rows (vertical) and its columns (horizontal), the term dimension, when applied to
a dataset most commonly refers to its columns, also called variables, attributes, or
features. The two axes are often referenced as n x d, where n denotes the number of
rows and d (sometimes p) denotes the number of dimensions,
- These are analogous to the axes of a matrix (usually m x n).

e Dimensionality Reduction (of a dataset): the process of reducing the number of
features of a dataset through some transformation that preserves the patters or
structure in the data.
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Definitions

e Linear combination: a mathematical expression where a set of terms of a vector are
multiplied by a set of scalar constants and the results summed.

e.g.
a1vVy +asvy +asvs + -+ a,Vvy,.

Where v, ... v, are vectors and a;, ... a, are scalars

v is the linear combination of vectors u; and
up,suchthatv=2*u;+1.5*u,

https://en.wikipedia.org/wiki/Linear combination Image credit: Svjo - license:CC BY-SA 4.0 - no changes
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Dimensionality Reduction (DR)

e There are multiple reasons that you want to do Dimensionality Reduction: one
is to do compress data.

e Data compression not only saves memory space, it also speeds up learning
algorithms.
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Dimensionality Reduction (DR)

X1: distance measured in cm
X2: distance measured in inches

We want to reduce the data to one dimension

Data Compression

X Reduce data from
x 2Dto 1D

x5 (inches)
X

x X

xy (cm)

Length in cm is rounded off to the nearest cm and length in inches is
rounded off to the nearest inch, that is why those examples do not perfectly

lie on a straight line.

Image source; ML course Stanford University
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Dimensionality Reduction (DR)

Data Compression

= " ~ Reduce data from
S ¥ 2D to 1D
g X
5 X
X
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Dimensionality Reduction (DR)

e |f we allow ourselves to approximate the original dataset by projecting all of
the original examples onto the green line, then we need only one number to
specify a point on the line.

e This way, we have reduced the problem from 2D to 1D.
e For this example this may not be a big deal, but if you have a dataset with
large number of features with redundant information, it will take too much

memory space and take more time to do the computations.

e In that case it's better to reduce the redundancy.
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Dimensionality Reduction (DR)

® [et's imagine if you have hundreds of features, it is difficult to keep track of all those features of the
dataset and sometimes we have redundant features such as the same measurement in both
centimeters and inches like shown in the previous example.

® Therefore, DR used in feature selection, reduction

® \Why?

o Curse of dimensionality — challenges of learning from (very) high-dimensional data, or
datasets with a large number of dimensions relative to the number of observations*.

* These considerations are generalizations and are more narrowly defined per domain/dataset/analysis

Methods:

® Principle component analysis (PCA)
® Singular Value Decomposition (SVD)
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Principal Component Analysis (PCA)

‘iﬁ RGI’ISSG]HGI‘ Tetherless World Constellation / )

K




Dimensionality Reduction with PCA

e Principal Component Analysis (PCA) is an Unsupervised Learning
Technique.

e PCA is a popular approach for deriving a low-dimensional set of
features from a large set of variables.

e A large part of the variation in the data can be explained in fewer
variables called “Principal Components”.

e We will see how to implement PCA in R using the Iris dataset
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Dimensionality Reduction with PCA

e (PCA) is a technique used to simplify a large and complex dataset by reducing its
dimensionality while retaining as much information as possible.

® Imagine you have a large dataset with many variables (like age, height, weight, income,
education level, etc.) for a large number of individuals.

e \With so many variables, it can be difficult to understand the patterns and relationships
between them.

e PCA can help by finding a smaller set of variables (called principal components) that
explain the most variation in the data. In other words, it finds the most important aspects of
the data that are responsible for most of its variation.
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Covariance

® Variance and Covariance are a measure of the “spread” of a set of points around their center of
mass (mean)

® Variance — measure of the deviation from the mean for points in one dimension e.g. heights

® Covariance as a measure of how much each of the dimensions vary from the mean with respect
to each other.

® Covariance is measured between 2 dimensions to see if there is a relationship between the 2
dimensions e.g. number of hours studied & marks obtained.

® The covariance between one dimension and itself is the variance

Reference: https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Covariance
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Variance

Fair die [edit]

A fair six-sided die can be modeled as a discrete random variable, X, with outcomes
1 through 6, each with equal probability 1/6. The expected value of X'is
(1+2+4+3+4+5+6)/6 = 7/2. Therefore, the variance of X is

Var(X) = 26: % (z - ;)2

=~ ((=5/2)% + (=3/2)* + (~1/2)% + (1/2)* + (3/2)% + (5/2)?)

35
12

S| =

https://en.wikipedia.org/wiki/Variance#Examples
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Dimensionality Reduction with PCA

PCA is useful in many different scenarios, including:

Data exploration: PCA can help you to visualize high- dimensional data in a lower
dimensional space.

Data compression: PCA can reduce the number of variables in a dataset, which can make
it easier to work with.

Feature selection: PCA can help to identify the most important variables in a dataset.
Data pre-processing: PCA can be used to remove noise from a dataset and to
standardize variables so that they have a similar scale.

Downstream Machine learning: PCA can be used as a pre-processing step before
applying machine learning algorithms to a dataset, to improve their performance and
reduce overfitting.
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Principal Component Analysis

e These principal components are calculated by taking linear
combinations of the original variables in such a way that each
component is orthogonal (uncorrelated) to the others.

e Eliminating less significant principal components allows us to
represent the data in a lower-dimensional space, which is easier to
understand and analyze.
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Principal Component Analysis

® Suppose that we wish to visualize n observations with measurements on a set of p
features, X1, X2, X3, ..., Xp as a part of exploratory data analysis.

e \We could do this by examining two-dimensional scatterplots of the data, which contains
the n observations’ measurements on two of the features, However, there are ¢} =

p_(p2—1) of such scatterplots, for example with p=10, there are 45 plots!

e |[f pislarge, then it will certainly not be possible to look at all of them. Moreover, most
likely, many of them will not be informative since they each contain just a small fraction
of the total information present in the dataset.
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Principal Component Analysis

® \We'll now explain the mathematics of PCA:
® The first principal component of a set of features X1, X2, .. ., Xp is the normalized linear combination
of the features that has the largest variance.

Z1 = ¢p11 X1 + @1 Xo + ...+ Pp1 Xy

By normalized, we mean that Z?Zl 2 =1 . We refer to the elements ¢11,...,¢pp1 as the loadings of the
first principal component; together, the loadings make up the principal component loading vector, @1 = (¢11

@21 ... pp1)T.

® Given a n x p dataset X,
O  Center the data (column means of X become zero)
O  We then look for the linear combination of the sample feature values of the form:

Zil = P11Ti1 + P21Ti2 + ... + Pp1Tip

that has largest sample variance, subject to the constraint that Zp ¢21 —1
~j=1771 —
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Principal Component Analysis

® To get the 1t PC, solve the optimization problem

1 n p 2 p
. . 3 2 p—
rga,xmnze - E E Dj1%i5 subject to E :¢j1 =1

115--,Pp1 =1

The objective that we are maximizing in is just the sample variance of the n values of z;;

® \Werefertoz1l,..., znl as the scores of the first principal component.

The above optimization problem can be solved via an eigen decomposition*, a standard technique in linear algebra.
After the first principal component Z1 of the features has been determined, we can find the second principal
component Z2 the linear combination of X1, ..., Xp that has maximal variance out of all linear combinations that
are uncorrelated with Z1.

® The second principal component scores z12, z22, ..., zn2 take the form:

Zi2 = Q12%i1 + P22Ti2 + ...+ PpaZip
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Principal Component Analysis

® Steps:
1) Center dataset: subtract column means from each row such that the mean of each variable is 0: X, =
X — x. Optionally scale variables by dividing each variable by its variance: X = %C(x)

2) Find covariance matrix: C = anlXS * X

3) Eigen-decompose covariance matrix: V-1CV =D
- V is the eigenvector matrix, D is the eigenvalue diagonal matrix.

4) Rearrange eigenvectors and eigenvalues descendingly by eigenvalues. The arranged eigenvectors
are the principal components.
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Principal Component Analysis

e The dataset is projected onto the Principal Components for visualization or further

analysis:

Ad Spending
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In-Class Work examples

e PCA on Iris dataset.

https://rpi.box.com/s/sma0oj43w4dhqdzyxu4bn7z8dcn497873
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PCA on Boston dataset

install.packages('MASS')
boston.df <- Boston

Do PCA!
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Thanks!
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