

Unsupervised Learning: k-Means, PAM, Hierarchical Clustering

Ahmed Eleish

Data Analytics ITWS/CSCI/MGMT - 4600/6600 September 30th, 2025

Tetherless World Constellation Rensselaer Polytechnic Institute

Contents

- Unsupervised Learning (Clustering)
- k-Means Clustering
- Partitioning Around Medoids (PAM)
- Hierarchical Clustering

Unsupervised Learning

- Machine learning paradigm where algorithms learn patterns from unlabeled data.
- Clustering is a type of unsupervised learning with the goal of finding structure in a dataset by identifying natural clusters of data points based on a similarity criterion (usually distance).
- The observations in these clusters are generally more similar (closer) to each other than they are to points in other clusters.

k-Means

- k-Means clustering is an unsupervised learning algorithm that, as the name hints, finds a fixed number (k) of clusters in a set of data.
- A *cluster* is a group of data points that are grouped together due to similarities in their features. When using a K-Means algorithm, a cluster is defined by a *centroid*, which is a calculated point at the center of a cluster.
- Every point in a data set is part of the cluster whose centroid is most closely located in feature space. To put it simply, K-Means finds *k* number of centroids, and then assigns all data points to the closest cluster while minimizing the sum of squared distances from the points to their assigned centroid.
- K-Means assumes spherical clusters.
- K-Means is sensitive to outliers.

Algorithm 10.1 K-Means Clustering

- 1. Randomly assign a number, from 1 to K, to each of the observations. These serve as initial cluster assignments for the observations.
- 2. Iterate until the cluster assignments stop changing:
 - (a) For each of the K clusters, compute the cluster centroid. The kth cluster centroid is the vector of the p feature means for the observations in the kth cluster.
 - (b) Assign each observation to the cluster whose centroid is closest (where *closest* is defined using Euclidean distance).

Reference: Introduction to Statistical Learning with Applications in R, 7_{th} Edition, Chapter 10 – KMeans

Algorithm 10.1 K-Means Clustering

- 1. Randomly assign a number, from 1 to K, to each of the observations. These serve as initial cluster assignments for the observations.
- 2. Iterate until the cluster assignments stop changing:
 - (a) For each of the K clusters, compute the cluster *centroid*. The kth cluster centroid is the vector of the p feature means for the observations in the kth cluster.
 - (b) Assign each observation to the cluster whose centroid is closest (where *closest* is defined using Euclidean distance).

Reference: Introduction to Statistical Learning with Applications in R, 7th Edition, Chapter 10 – KMeans

Observations (data) is shown

Step 1 of the algorithm: each observation is randomly assigned to a cluster

Reference: Introduction to Statistical Learning with Applications in R, 7th Edition, Chapter 10 – KMeans

Iteration1 Step 2(a): The cluster centroids are computed; these are shown in large colored disks. Initially centroids are almost completely overlapping because the initial cluster assignment were chosen at random

Iteration 1, Step 2b

Iteration 1 Step 2(b): each observation is assigned to the nearest centroid

Iteration 2, Step 2a

Iteration 2, Step 2(a): the step 2(a) is once again performed, leading to new cluster centroids.

Final Results

Final Results: the results obtained after ten iterations. You can see the distinct clusters with their centroids.

Image/Photo Credit: Introduction to Statistical Learning with Applications in R, 7th Edition, Chapter 10 – KMeans Reference: Introduction to Statistical Learning with Applications in R, 7th Edition, Chapter 10 – KMeans

K-Means clustering Animation

http://shabal.in/visuals/kmeans/6.html

Evaluating K-Means Models (Elbow Method)

Within-Cluster Sum of Squares: sum of squared Euclidean distances between all points in a cluster and the cluster's centroid.

$$WCSS = \sum_{i=1}^k \sum_{\mathbf{x} \in C_i} \left| \left| \mathbf{x} - \mathbf{c}_i
ight|
ight|^2$$

 The elbow method is a heuristic that can be subjective and unreliable.

Plot of total within cluster sum of squares with values of *k*

Evaluating K-Means Models (Silhouette Method)

Silhouette value: a measure of similarity between a point and its cluster

$$a(i) = rac{1}{|C_i|-1} \sum_{j \in C_i, i
eq j} d(i,j) \qquad \qquad b(i) = \min_{J
eq I} rac{1}{|C_j|} \sum_{j \in C_j} d(i,j)$$

Mean distance between *i* and other points in the cluster

Minimum megan distance between *i* and all points in any other clsuter

$$s(i) = rac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$
 , if $|C_i| > 1$ $s(i) = 0$, if $|C_i| = 1$

https://en.wikipedia.org/wiki/Silhouette (clustering)

Evaluating K-Means Models (Silhouette Method)

Silhouette value: a measure of similarity between a point and its cluster

Clusters silhouette plot
Average silhouette width: 0.55

https://en.wikipedia.org/wiki/Silhouette (clustering)

Partitioning Around Medoids (PAM)

- PAM, also called K-Medoids, is similar to K-Means but instead of calculating centroids, this algorithm selects actual data points (medoids) as cluster centers
- PAM is more robust to outliers and noise.
- The algorithm can be computationally expensive because it calculates pairwise distances between all data points.

Sadeghi, B. (2025). Clustering in geo-data science: Navigating uncertainty to select the most reliable method. *Ore Geology Reviews*, 106591. https://doi.org/10.1016/j.oregeorev.2025.106591

Partition Around Medoids (PAM)

Algorithm:

- **Build Phase** (find initial *k* medoids):
 - Select k points with the least cost, i.e. sum of distances to all other points
 - Assign all non-medoid points to the cluster whose medoid is closest
- **Swap Phase** (find best *k* medoids):
 - For each medoid, for each non-medoid:
 - Consider swapping the points, calculate the cost (summed distances)
 - Make the best swap

Partition Around Medoids (PAM)

Algorithm:

- Build Phase (find initial k medoids):
 - Select k points with the least cost, i.e. sum of distances to all other points
 - Assign all non-medoid points to the cluster whose medoid is closest
- Swap Phase (find best k medoids):
 - For each medoid, for each non-medoid:
 - Consider swapping the points, calculate the cost (summed distances)
 - Make the best swap

Evaluating PAM Models (Elbow Method)

Objective (Cost) Function: sum of distances between all points and their closest medoid.

$$\sum_{i=1}^K \sum_{x \in C_i} d(x, m_i)$$

Plot of PAM cost function with values of k

Evaluating K-Means Models (Silhouette Method)

Silhouette value: a measure of similarity between a point and its cluster

https://en.wikipedia.org/wiki/Silhouette (clustering)

Hierarchical Clustering

- Contrary to partitional clustering, hierarchical clustering creates hierarchies of clusters through a bottom-up (agglomerative) or top-down (divisive) approach.
- Agglomerative clustering starts with each point in its own cluster, then iteratively merges clusters until it ends with a single cluster.
- Divisive clustering starts with all points in a single cluster, then recursively splits into multiple cluster.
- Hierarchical clustering offers flexibility and interpretability.
- Hierarchical clustering produces a dendrogram.

Sadeghi, B. (2025). Clustering in geo-data science: Navigating uncertainty to select the most reliable method. *Ore Geology Reviews*, 106591. https://doi.org/10.1016/j.oregeorev.2025.106591

Hierarchical Clustering

Algorithm (agglomerative clustering)

- 1. Assign each point to a separate cluster (*n* cluster)
- 2. Merge the two closest* clusters
- 3. Repeat (2) Until all points are in a single cluster
- * Distance between clusters:
- Complete linkage: maximum distance between points in two clusters
- Single linkage: minimum distance between points in two clusters
- Average linkage: average distance between points in two clusters

Evaluating Hierarchical Clustering (Dendrogram)

Cluster Dendrogram

iris.dist hclust (*, "complete")

Evaluating Hierarchical Clustering (Dendrogram)

In class exercise code:

https://rpi.box.com/s/2wg4obl8ajrc1qm12rirdffylz96yn1d

Thanks!

