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Unsupervised Learning

● Machine learning paradigm where algorithms learn patterns from unlabeled 
data.

● Clustering is a type of unsupervised learning with the goal of finding 
structure in a dataset by identifying natural clusters of data points based on a 
similarity criterion (usually distance).

● The observations in these clusters are generally more similar (closer) to each 
other than they are to points in other clusters.
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k-Means
• k-Means clustering is an unsupervised learning algorithm that, as the name hints, finds a fixed 
number (k) of clusters in a set of data. 

• A cluster is a group of data points that are grouped together due to similarities in their features. When 
using a K-Means algorithm, a cluster is defined by a centroid, which is a calculated point at the center 
of a cluster. 

• Every point in a data set is part of the cluster whose centroid is most closely located in feature space. 
To put it simply, K-Means finds k number of centroids, and then assigns all data points to the closest 
cluster while minimizing the sum of squared distances from the points to their assigned centroid.

• K-Means assumes spherical clusters.

• K-Means is sensitive to outliers.
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K-Means Algorithm 

K-Means Algorithm

43

Resource:  MIT 6.0002 lecture 12 ( MIT Open Courseware)
https://ocw.mit.edu/index.htm

Reference: Introduction to Statistical Learning with Applications in R, 7th Edition, Chapter 10 – KMeansReference: Introduction to Statistical Learning with Applications in R, 7th 

Edition, Chapter 10 – KMeans
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Reference: Introduction to Statistical Learning with Applications in R, 7th Edition, Chapter 10 – KMeans

Image/Photo Credit: Introduction to Statistical Learning with Applications in R, 7th Edition, Chapter 10 – KMeans
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Reference: Introduction to Statistical Learning with Applications in R, 7th Edition, Chapter 10 – KMeans

Image/Photo Credit: Introduction to Statistical Learning with Applications in R, 7th Edition, Chapter 10 – KMeans
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K-Means Algorithm 

Reference: Introduction to Statistical Learning with Applications in R, 7th 

Edition, Chapter 10 – KMeans
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Reference: Introduction to Statistical Learning with Applications in R, 7th Edition, Chapter 10 – KMeans
Image/Photo Credit: Introduction to Statistical Learning with Applications in R, 7th Edition, Chapter 10 – KMeans

The progress of the K-means algorithm 

Observations (data) is shown

Step 1 of the algorithm: each observation is randomly 
assigned to a cluster

Iteration1 Step 2(a): The cluster centroids are computed; 
these are shown in large colored disks. Initially centroids 
are almost completely overlapping because the initial 
cluster assignment were chosen at random
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Observations (data) is shown Step 1 of the algorithm: each 
observation is randomly assigned to a 
cluster 

Iteration1 Step 2(a): The cluster centroids 
are computed; these are shown in large 
colored disks. Initially centroids are almost 
completely overlapping because the initial 
cluster assignment were chosen at random 
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K-Means Algorithm 

Image/Photo Credit: Introduction to Statistical Learning with Applications in R, 7th Edition, Chapter 10 – KMeans
Reference: Introduction to Statistical Learning with Applications in R, 7th Edition, Chapter 10 – KMeans

Iteration 1 Step 2(b) : each 
observation is assigned to 
the nearest centroid 

Iteration 2, Step 2(a): the step 
2(a) is once again performed, 
leading to new cluster centroids. 

Final Results: the results obtained 
after ten iterations. You can see the 
distinct clusters with their centroids. 
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• K-Means clustering Animation

http://shabal.in/visuals/kmeans/6.html

http://shabal.in/visuals/kmeans/6.html
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Evaluating K-Means Models (Elbow Method)

9

Within-Cluster Sum of Squares: sum of squared 
Euclidean distances between all points in a cluster 
and the cluster’s centroid.

Plot of total within cluster sum of squares with values of k

• The elbow method is a heuristic that can be 
subjective and unreliable.
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Evaluating K-Means Models (Silhouette Method)

10

Silhouette value: a measure of similarity between 
a point and its cluster

https://en.wikipedia.org/wiki/Silhouette_(clustering)

Mean distance between i and other points in the cluster Minimum meqan distance between i and all points in any other clsuter

https://en.wikipedia.org/wiki/Silhouette_(clustering)
https://en.wikipedia.org/wiki/Silhouette_(clustering)
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Evaluating K-Means Models (Silhouette Method)
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Silhouette value: a measure of similarity between 
a point and its cluster

https://en.wikipedia.org/wiki/Silhouette_(clustering)

https://en.wikipedia.org/wiki/Silhouette_(clustering)
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Partitioning Around Medoids (PAM)

• PAM, also called K-Medoids, is similar to K-Means but instead of calculating 
centroids, this algorithm selects actual data points (medoids) as cluster centers

• PAM is more robust to outliers and noise.

• The algorithm can be computationally expensive because it calculates 
pairwise distances between all data points.

Sadeghi, B. (2025). Clustering in geo-data science: Navigating uncertainty to select 
the most reliable method. Ore Geology Reviews, 106591. 
https://doi.org/10.1016/j.oregeorev.2025.106591

https://doi.org/10.1016/j.oregeorev.2025.106591
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Partition Around Medoids (PAM)
Algorithm:

• Build Phase (find initial k medoids):

- Select k points with the least cost, i.e. sum of distances to all other points
- Assign all non-medoid points to the cluster whose medoid is closest

• Swap Phase (find best k medoids):

- For each medoid, for each non-medoid:

- Consider swapping the points, calculate the cost (summed distances)

- Make the best swap
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Evaluating PAM Models (Elbow Method)
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Objective (Cost) Function: sum of distances 
between all points and their closest medoid.

Plot of PAM cost function with values of k
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Evaluating K-Means Models (Silhouette Method)
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Silhouette value: a measure of similarity between 
a point and its cluster

https://en.wikipedia.org/wiki/Silhouette_(clustering)

https://en.wikipedia.org/wiki/Silhouette_(clustering)
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Hierarchical Clustering
• Contrary to partitional clustering, hierarchical clustering creates hierarchies of clusters through a 
bottom-up (agglomerative) or top-down (divisive) approach.

• Agglomerative clustering starts with each point in its own cluster, then iteratively merges clusters until 
it ends with a single cluster.

• Divisive clustering starts with all points in a single cluster, then recursively splits into multiple cluster.

• Hierarchical clustering offers flexibility and interpretability.

• Hierarchical clustering produces a dendrogram.

Sadeghi, B. (2025). Clustering in geo-data science: Navigating uncertainty to select 
the most reliable method. Ore Geology Reviews, 106591. 
https://doi.org/10.1016/j.oregeorev.2025.106591

https://doi.org/10.1016/j.oregeorev.2025.106591
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Hierarchical Clustering
Algorithm (agglomerative clustering)

1. Assign each point to a separate cluster (n cluster)

2. Merge the two closest* clusters

3. Repeat (2) Until all points are in a single cluster

* Distance between clusters:
• Complete linkage: maximum distance between points in two clusters
• Single linkage: minimum distance between points in two clusters
• Average linkage: average distance between points in two clusters
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Evaluating Hierarchical Clustering (Dendrogram)
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Evaluating Hierarchical Clustering (Dendrogram)
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https://cran.r-project.org/web/packages/dendextend/vignettes/Cluster_Analysis.html

https://cran.r-project.org/web/packages/dendextend/vignettes/Cluster_Analysis.html
https://cran.r-project.org/web/packages/dendextend/vignettes/Cluster_Analysis.html
https://cran.r-project.org/web/packages/dendextend/vignettes/Cluster_Analysis.html
https://cran.r-project.org/web/packages/dendextend/vignettes/Cluster_Analysis.html


Tetherless World ConstellationTetherless World Constellation

In class exercise code: 
https://rpi.box.com/s/2wg4obl8ajrc1qm12rirdffylz96yn1d
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https://rpi.box.com/s/2wg4obl8ajrc1qm12rirdffylz96yn1d
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Thanks!
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