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Unsupervised Learning

e Machine learning paradigm where algorithms learn patterns from unlabeled
data.

e Clustering is a type of unsupervised learning with the goal of finding
structure in a dataset by identifying natural clusters of data points based on a
similarity criterion (usually distance).

e The observations in these clusters are generally more similar (closer) to each
other than they are to points in other clusters.
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k-Means

» k-Means clustering is an unsupervised learning algorithm that, as the name hints, finds a fixed
number (k) of clusters in a set of data.

* A cluster is a group of data points that are grouped together due to similarities in their features. When
using a K-Means algorithm, a cluster is defined by a centroid, which is a calculated point at the center
of a cluster.

* Every point in a data set is part of the cluster whose centroid is most closely located in feature space.
To put it simply, K-Means finds kK number of centroids, and then assigns all data points to the closest
cluster while minimizing the sum of squared distances from the points to their assigned centroid.

» K-Means assumes spherical clusters.

» K-Means is sensitive to outliers.
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K-Means Algorithm

Algorithm 10.1 K-Means Clustering

1. Randomly assign a number, from 1 to K, to each of the observations.
These serve as initial cluster assignments for the observations.

2. Iterate until the cluster assignments stop changing:

(a) For each of the K clusters, compute the cluster centroid. The
kth cluster centroid is the vector of the p feature means for the
observations in the kth cluster.

(b) Assign each observation to the cluster whose centroid is closest
(where closest is defined using Euclidean distance).

Reference: Introduction to Statistical Learning with Applications in R, 7
Edition, Chapter 10 — KMeans
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K-Means Algorithm
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K-Means Algorithm
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K-Means Algorithm

Iteration 1, Step 2b Iteration 2, Step 2a Final Results
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Image/Photo Credit: Introduction to Statistical Learning with Applications in R, 7th Edition, Chapter 10 — KMeans
Reference: Introduction to Statistical Learning with Applications in R, 7th Edition, Chapter 10 — KMeans
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» K-Means clustering Animation

http://shabal.in/visuals/kmeans/6.html
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Evaluating K-Means Models (Elbow Method)

Within-Cluster Sum of Squares: sum of squared
Euclidean distances between all points in a clustel
and the cluster’s centroid.
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« The elbow method is a heuristic that can be
subjective and unreliable.

k.list

Plot of total within cluster sum of squares with values of k
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Evaluating K-Means Models (Silhouette Method)

Silhouette value: a measure of similarity between
a point and its cluster
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https://en.wikipedia.org/wiki/Silhouette (clustering)
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Evaluating K-Means Models (Silhouette Method)

Silhouette value: a measure of similarity between Clusters silhouette plot
a point and its cluster Average silhouette width: 0.55

25-

ooooo
20-

0.75

assigned.clusters

Sy
'
e

. cluster
1
e 2

e 3

Petal.Width
H
(3
L3
(3
L3
L3

0.50

o
v

Silhouette width Si

0.5-

0.0- : \ \
2 4 6
Petal.Length

0.00
https://en.wikipedia.org/wiki/Silhouette (clustering)

Rerlsselaer Tetherless World Constellation



https://en.wikipedia.org/wiki/Silhouette_(clustering)

Partitioning Around Medoids (PAM)

* PAM, also called K-Medoids, is similar to K-Means but instead of calculating
centroids, this algorithm selects actual data points (medoids) as cluster centers

* PAM is more robust to outliers and noise.

» The algorithm can be computationally expensive because it calculates
pairwise distances between all data points.

Sadeghi, B. (2025). Clustering in geo-data science: Navigating uncertainty to select

the most reliable method. Ore Geology Reviews, 106591.
https://doi.org/10.1016/j.oregeorev.2025.106591
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Partition Around Medoids (PAM)

Algorithm:

« Build Phase (find initial kK medoids):

- Select k points with the least cost, i.e. sum of distances to all other points
- Assign all non-medoid points to the cluster whose medoid is closest

« Swap Phase (find best kK medoids):
- For each medoid, for each non-medoid:
- Consider swapping the points, calculate the cost (summed distances)

- Make the best swap
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Partition Around Medoids (PAM)

BUILD iteration #1

Algorithm: 09 7
. Build Phase (find initial Kk medoids): 08 |
- Select k points with the least cost, i.e. sum of distances to all other points
- Assign all non-medoid points to the cluster whose medoid is closest 0.7 +
. Swap Phase (find best k medoids): os |
- For each medoid, for each non-medoid:
- Consider swapping the points, calculate the cost (summed distances) 1
- Make the best swap 04T
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0.1
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Evaluating PAM Models (Elbow Method)

Objective (Cost) Function: sum of distances
between all points and their closest medoid.
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Evaluating K-Means Models (Silhouette Method)

Silhouette value: a measure of similarity between o .
. . usters silhouette plot
a point and its cluster Average silhouette width: 0.55
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Hierarchical Clustering

 Contrary to partitional clustering, hierarchical clustering creates hierarchies of clusters through a
bottom-up (agglomerative) or top-down (divisive) approach.

» Agglomerative clustering starts with each point in its own cluster, then iteratively merges clusters until
it ends with a single cluster.

* Divisive clustering starts with all points in a single cluster, then recursively splits into multiple cluster.
« Hierarchical clustering offers flexibility and interpretability.

* Hierarchical clustering produces a dendrogram.

Sadeghi, B. (2025). Clustering in geo-data science: Navigating uncertainty to select

the most reliable method. Ore Geology Reviews, 106591.
https://doi.org/10.1016/j.oregeorev.2025.106591
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Hierarchical Clustering

Algorithm (agglomerative clustering)

1. Assign each point to a separate cluster (n cluster)
2.  Merge the two closest* clusters
3. Repeat (2) Until all points are in a single cluster

* Distance between clusters:
« Complete linkage: maximum distance between points in two clusters
« Single linkage: minimum distance between points in two clusters

* Average linkage: average distance between points in two clusters
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Evaluating Hierarchical Clustering (Dendrogram)

Cluster Dendrogram
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Evaluating Hierarchical Clustering (Dendrogram)
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https://cran.r-project.org/web/packages/dendextend/vignettes/Cluster Analysis.html
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In class exercise code:
https://rpi.box.com/s/2wg4obl8ajrc1gm12rirdffylz96yn1d
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Thanks!
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