

# Support Vector Machines (SVM) for classification Ahmed Eleish Data Analytics ITWS-4600/ITWS-6600/MATP-4450/CSCI-4960 March 21st 2025

Tetherless World Constellation Rensselaer Polytechnic Institute



## **Support Vector Machines**

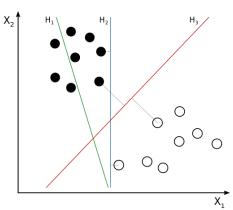
- Rationale
- Hyperplanes, Margins and Support vectors
- Classification using SVM
- Linear Separability of classes (or not)
- Soft Margin SVM
- Kernels





#### Rationale

- In *p*-dimensional space, if data points (*p*-dimensional vectors) belonging to 2 different classes can be separated by a (*p*-1)-dimensional hyperplane, this hyperplane can be used as a linear classifier.
- Example: in 2d space, a line could be linear classifier...
- The hyperplane representing the largest separation or "margin" between the classes maximizes the distance to the nearest data point from each class.



SVM can be used for classification, regression and outlier detection.





## Hyperplane

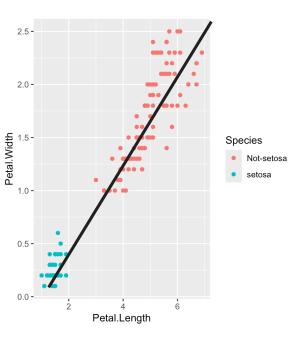
- A hyperplane is a plane of dimension p-1 in a p dimensional space
- "a flat hypersurface, a subspace whose dimension is one less than that of the ambient space"
- "any codimension-1 vector subspace of a vector space"

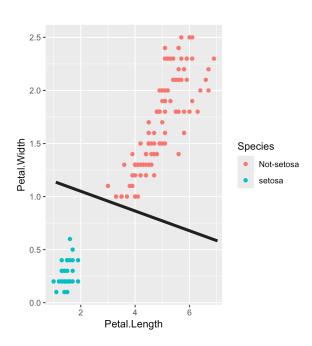
https://en.wikipedia.org/wiki/Hyperplane https://mathworld.wolfram.com/Hyperplane.html

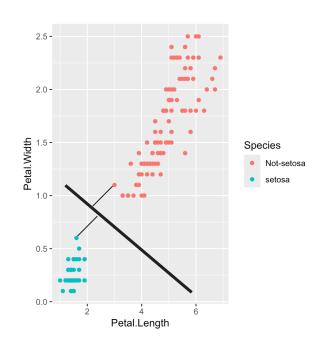




# Hyperplanes







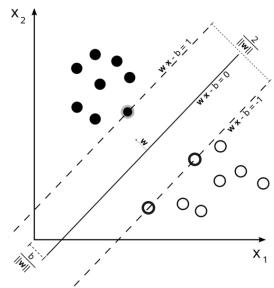




## Margin

 The distance between the hyperplane (decision boundary) and the nearest points from each class.

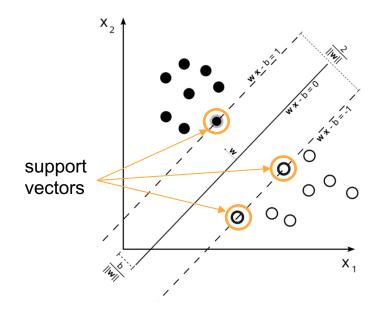
- larger margin = greater confidence in the classifier
- SVMs find the hyperplane that maximizes the margin
  - o "maximum-margin classifiers"





### Support Vectors

- The points closest to the decision boundary.
- They determine the position and orientation of the hyperplane, i.e. define the decision boundary.
- They are used to calculate the margin.





## **Support Vector Machines**

 Given training dataset of points (x<sub>1</sub>,y<sub>1</sub>) where y<sub>i</sub> is equal to 1 or -1

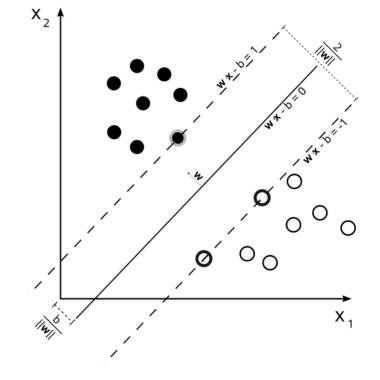
\* Find the maximum-margin-hyperplane that divides the points  $x_i$  for which  $y_i = 1$  from the points for which  $y_i = -1$ 

Hyperplane:

$$W^T X - b = 0$$

To find W and b:

$$egin{array}{ll} & \min_{\mathbf{w},\;b} & rac{1}{2}\|\mathbf{w}\|^2 \ & ext{subject to} & y_i(\mathbf{w}^ op\mathbf{x}_i-b) \geq 1 \quad orall i \in \{1,\ldots,n\}. \end{array}$$

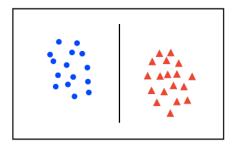


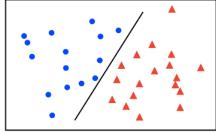




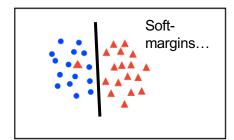
## Linear Separability

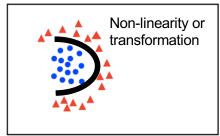
linearly separable





not linearly separable





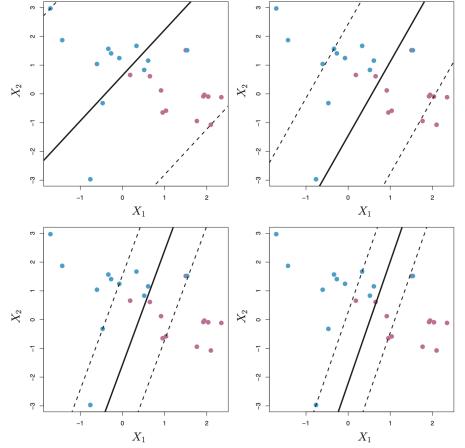




# Soft-margin SVM

Allow for some margin violations controlled by the parameter *C*, the *regularization parameter* 

$$\min_{w,b,z} \quad \frac{1}{2} ||w||^2 + C \sum_{i=1}^{\ell} z_i 
s.t \quad z_i \ge 1 - y_i (x_i \cdot w + b) 
z_i \ge 0 \quad i = 1,..., N$$

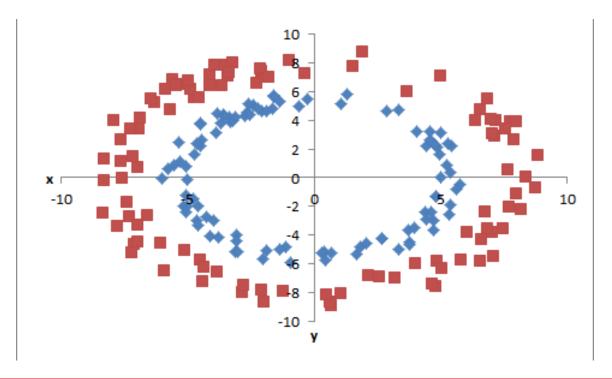


Top left: Highest C value, decreasing C narrows the margin



# Non-linearity

What to do??







### Non-linearity

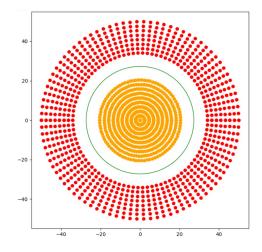
#### Transform the input:

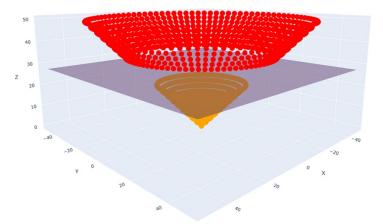
 Add a new dimension where the data are linearly separable

If are dataset contains variables X1, X2: we can add X3 = f(X1,X2)

e.g. 
$$X3 = (X1^2 + X2^2)^{(1/2)}$$

- Computationally expensive

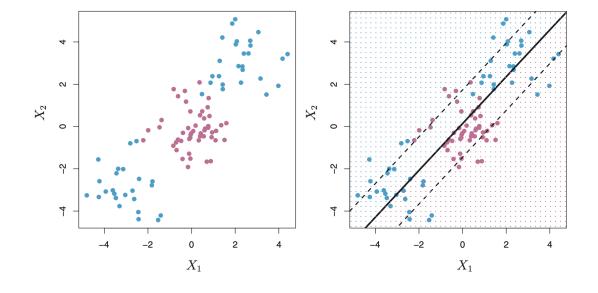








# More practically...







#### The Kernel Trick

Instead of adding dimensions, find similarity between points.

- similarity between points  $x_1 = (x1_1, x2_1)$  and  $x_2 = (x1_2, x2_2)$  using a function  $f(x_1, x_2)$ 

e.g. Radial Basis Function (RBF) Kernel:

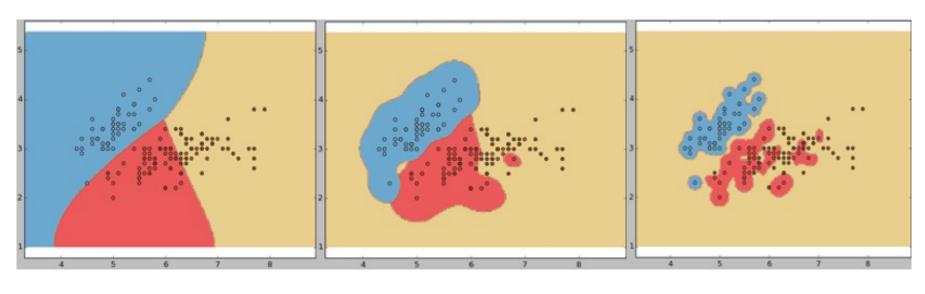
$$K(\mathbf{x}, \mathbf{x}') = \exp(-\gamma \|\mathbf{x} - \mathbf{x}'\|^2)$$

 $\gamma$  is a hyperparameter controlling the *linearity* of the model





# Gamma $(\gamma)$



$$\gamma = 0.1$$
  $\gamma = 10$   $\gamma = 100$ 





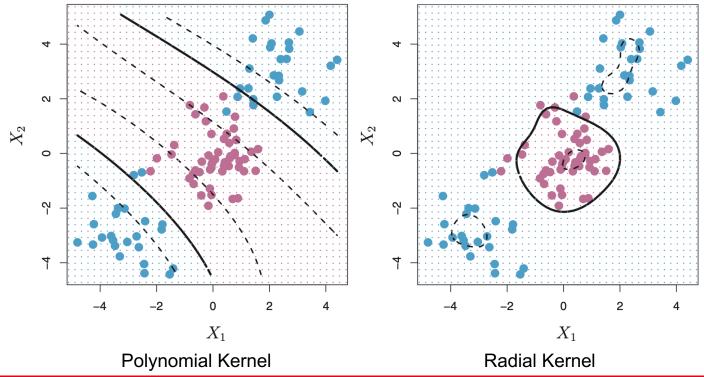
#### Kernels

- Polynomial Kernel
- Gaussian Kernel
- Gaussian RBF Kernel
- Laplace RBF Kernel
- Hyperbolic Tangent Kernel
- Sigmoid Kernel
- Bessel function of first kind Kernel
- ANOVA radial basis Kernel
- Linear Splines Kernel





# Applying Kernels







#### In-class exercise

https://rpi.box.com/s/a3wbn06nzhojai15unqrxgoj9x7truds



# Thanks!



