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Dimensionality Reduction (DR)
● There are multiple reasons that you want to do Dimensionality Reduction: one 

is to do data compression. 

● Data compression not only allow us to save memory space, it also allow us to 
speed up the learning algorithms.
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Dimensionality Reduction (DR)
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Image source; ML course Stanford University 

X1: distance measured in cm
X2: distance measured in inches 

We want to reduced the data to one dimension 

Length in cm is rounded off to the nearest cm and length in inches is 
rounded off to the nearest inch, that is why those examples do not perfectly 
lie on a straight line. 
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Dimensionality Reduction (DR)

3

Image source; ML course Stanford University 

X1: Temperature in degrees Celsius
X2: Pressure in Pascals

We want to reduced the data to one dimension 
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Dimensionality Reduction (DR)
● If we reduce the data to 1-D, this will reduce the redundancy.

● For this example this may not be a big deal, but if you have a dataset with 
large number of features with redundant information, it will take too much 
memory space and also take more time to do the computations.

● In that case it’s better to reduced the redundancy.
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Dimensionality Reduction (DR)
● Let’s imagine if you have hundreds of features, it is difficult to keep track of all 

those features of the dataset and sometimes we have redundant features 
such as the same measurement in both centimeters and inches like shown in 
the previous example.
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Dimensionality Reduction (DR)
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Image source; ML course Stanford University 
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Dimensionality Reduction (DR)
● If we allow ourselves to approximate the original dataset by projecting all of

the original examples onto the green line, then we need only one number to 
specify a point on the line.

● This way, we have reduced the problem from 2D to 1D.
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Dimensionality Reduction (DR) Methods
● Used in feature selection, reduction
● Why?

○ Curse of dimensionality – or – some subset of the data should not be used as it adds 
noise

Methods:
● Principle component analysis (PCA)
● Singular Value Decomposition (SVD)
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Covariance
● Variance and Covariance are a measure of the “spread” of a set of points 

around their center of mass (mean) 
● Variance – measure of the deviation from the mean for points in one 

dimension e.g. heights 
● Covariance as a measure of how much each of the dimensions vary from 

the mean with respect to each other. 
● Covariance is measured between 2 dimensions to see if there is a 

relationship between the 2 dimensions e.g. number of hours studied & 
marks obtained. 

● The covariance between one dimension and itself is the variance
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Reference: https://en.wikipedia.org/wiki/Variance
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Variance

https://en.wikipedia.org/wiki/Variance#Examples

https://en.wikipedia.org/wiki/Variance
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Dimensionality Reduction with PCA

● Principal Component Analysis (PCA)  is an Unsupervised Learning 
Technique.

● PCA is a popular approach for deriving a low-dimensional set of 
features from a large set of variables.

● A large part of the variation in the data can be explained in fewer 
variables called “Principal Components”.

● We will see how to implement PCA in R using Iris dataset
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Dimensionality Reduction with PCA

PCA is useful in many different scenarios, including: 
● Data exploration: PCA can help you to visualize high- dimensional data in a lower 

dimensional space. 
● Data compression: PCA can reduce the number of variables in a dataset, which can make it 

easier to work with. 
● Data pre-processing: PCA can be used to remove noise from a dataset and to standardize 

variables so that they have a similar scale. 
● Feature selection: PCA can help to identify the most important variables in a dataset. 
● Machine learning: PCA can be used as a pre-processing step before applying machine 

learning algorithms to a dataset, to improve their performance and reduce overfitting. 
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Dimensionality Reduction with PCA

● (PCA) is a technique used to simplify a large and complex dataset by reducing its 
dimensionality while retaining as much information as possible.

● Imagine you have a large dataset with many variables (like age, height, weight, income, 
education level, etc.) for a large number of individuals.

● With so many variables, it can be difficult to understand the patterns and relationships 
between them.

● PCA can help by finding a smaller set of variables (called principal components) that 
explain the most variation in the data. In other words, it finds the most important aspects of 
the data that are responsible for most of its variation.
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Principal Component Analysis

● These principal components are calculated by taking linear 
combinations of the original variables in such a way that each 
component is orthogonal (uncorrelated) to the others.

● Eliminating less significant principal components allows us to 
represent the data in a lower-dimensional space, which is easier to 
understand and analyze.

● PCA is NOT Linear Regression.

14



Tetherless World Constellation

Principal Component Analysis
● Suppose that we wish to visualize ”n” observations with measurements on a set of 

“p”features, X1, X2, X3, ..., Xp as a part of exploratory data analysis. 

● We could do this by examining two-dimensional scatterplots of the data, which contains 
the n observations’ measurements on two of the features, However, there are 𝐶!

" =
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! of such scatterplots, for example with p=10, there are 45 plots!

● If p is large, then it will certainly not be possible to look at all of them. Moreover, most 
likely, many of them will not be informative since they each contain just a small fraction 
of the total information present in the dataset. 
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Principal Component Analysis
● We’ll now explain the mathematics of PCA:
● The first principal component of a set of features X1, X2, . . . , Xp is the normalized linear combination 

of the features that has the largest variance.

By normalized, we mean that                        . We refer to the elements φ11,...,φp1 as the loadings of the 
first principal component; together, the loadings make up the principal component loading vector, φ1 = (φ11 
φ21 ... φp1)T.

● Given a n × p dataset X,
○ Center the data (column means of X become zero)
○ We then look for the linear combination of the sample feature values of the form:

that has largest sample variance, subject to the constraint that 
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Principal Component Analysis
● To get the 1st PC, solve the optimization problem

the objective that we are maximizing in is just the sample variance of the n values of zi1
● We refer to z11, . . . , zn1 as the scores of the first principal component. 
● The above optimization problem can be solved via an eigen decomposition, a standard technique in linear 

algebra.
● After the first principal component Z1 of the features has been determined, we can find the second principal 

component Z2 the linear combination of X1, . . . , Xp that has maximal variance out of all linear combinations 
that are uncorrelated with Z1.

● The second principal component scores z12, z22, ..., zn2 take the form:
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Principal Component Analysis
● It turns out that constraining Z2 to be uncorrelated with Z1 is equivalent to 

constraining the direction φ2 to be orthogonal (perpendicular) to the direction φ1.
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In-Class Work examples
● PCA on Iris dataset.
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https://rpi.box.com/s/5a9nt9rg22mhkcmq9tk3f455kw3zv015

https://rpi.box.com/s/5a9nt9rg22mhkcmq9tk3f455kw3zv015
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PCA on Boston dataset
install.packages('MASS')
boston.df <- Boston
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Do PCA!
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Thanks!
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