

why not change the world?®

Support Vector Machines (SVM) for classification Ahmed Eleish Data Analytics ITWS-4600/ITWS-6600/MATP-4450/CSCI-4960 November 5th 2024

Tetherless World Constellation Rensselaer Polytechnic Institute

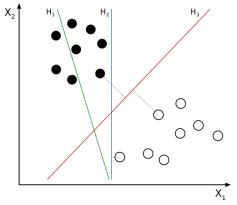
Support Vector Machines

- Rationale
- Hyperplanes, Margins and Support vectors
- Classification using SVM
- Linear Separability of classes (or not)
 - Transformation of input
 - Kernel Trick
- Soft Margin SVM
- SVM Regression

Rationale

sselaer

- In *p*-dimensional space, if data points (*p*-dimensional vectors) belonging to 2 different classes can be separated by a (*p*-1)-dimensional hyperplane, this hyperplane can be used as a linear classifier.
- Example: in 2d space, a line could be linear classifier...
- The hyperplane representing the largest separation or "margin" between the classes maximizes the distance to the nearest data point from each class.
- SVM can be used for classification, regression and outlier detection.

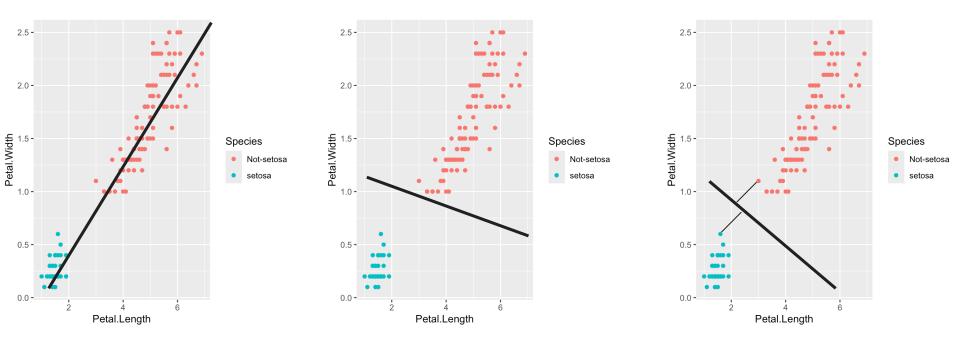


Hyperplane

- A hyperplane is a plane of dimension *p*-1 in a p dimensional space
- "a flat hypersurface, a subspace whose dimension is one less than that of the ambient space"
- "any codimension-1 vector subspace of a vector space"

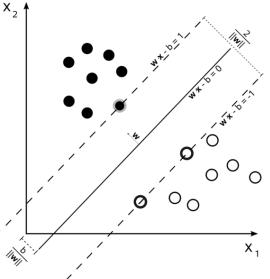
https://en.wikipedia.org/wiki/Hyperplane https://mathworld.wolfram.com/Hyperplane.html

Hyperplanes



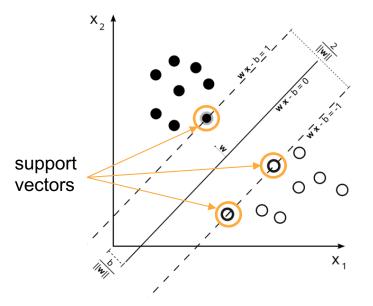
Margin

- The distance between the hyperplane (decision boundary) and the nearest points from each class.
- larger margin = greater confidence in the classifier
- SVMs find the hyperplane that maximizes the margin
 - o "maximum-margin classifiers"



Support Vectors

- The points closest to the decision boundary.
- They determine the position and orientation of the hyperplane, i.e. define the decision boundary.
- They are used to calculate the margin.



Support Vector Machines

Given training dataset of points (x_1, y_1) where y_i is equal to 1 or -1

* Find the maximum-margin-hyperplane that divides the points x_i for which $y_i = 1$ from the points for which $y_i = -1$

Hyperplane:

$$W^T X - b = 0$$

To find W and b:

 \mathbf{w}, b

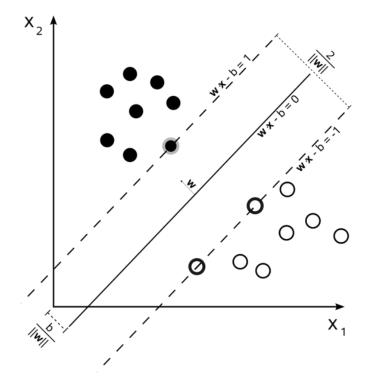
minimize

$$\frac{1}{2} \|\mathbf{w}\|^2$$

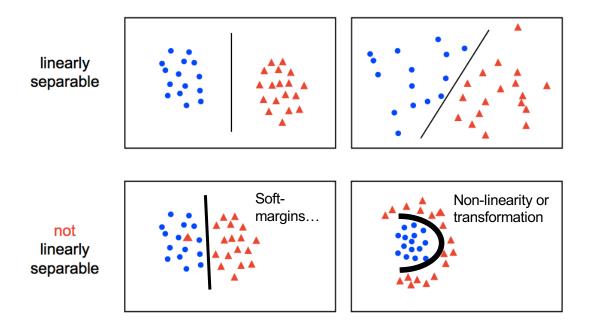
subject to

$$\|\mathbf{w}\|^2$$

$$y_i(\mathbf{w}^ op \mathbf{x}_i - b) \geq 1 \quad orall i \in \{1,\dots,n\}$$



Linear Separability



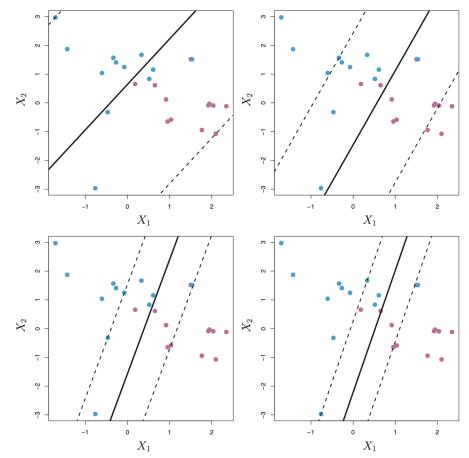
Soft-margin SVM

Allow for some margin violations controlled by the parameter *C*, the *regularization parameter*

$$\min_{w,b,z} \quad \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{\ell} z_i$$

$$s.t \quad z_i \ge 1 - y_i \left(x_i \cdot w + b\right)$$

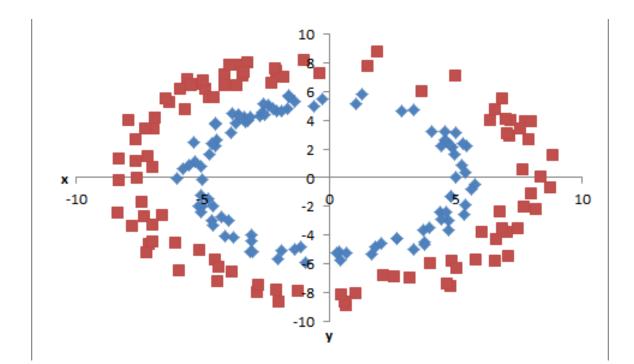
$$z_i \ge 0 \quad i = 1, ..., N$$



Top left: Highest C value, decreasing C narrows the margin

Non-linearity

What to do??



Tetherless World Constellation

Non-linearity

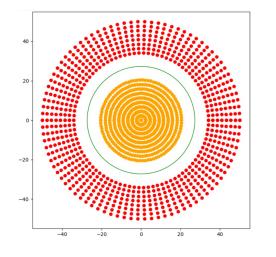
Transform the input:

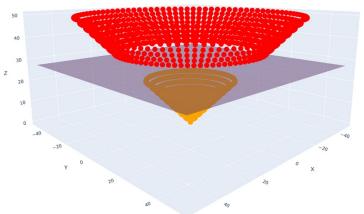
 Add a new dimension where the data are linearly separable

If are dataset contains variables X1, X2: we can add X3 = f(X1,X2)

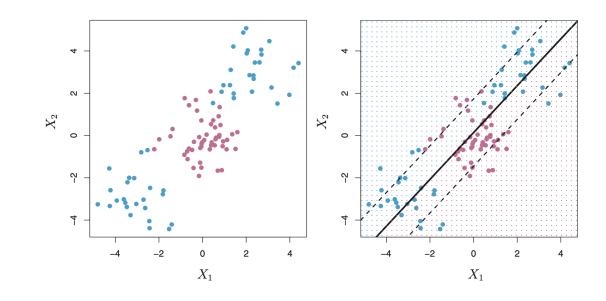
e.g. $X3 = (X1^2 + X2^2)^{(1/2)}$

- Computationally expensive





More practically...



The Kernel Trick

• Instead of adding dimensions, find similarity between points.

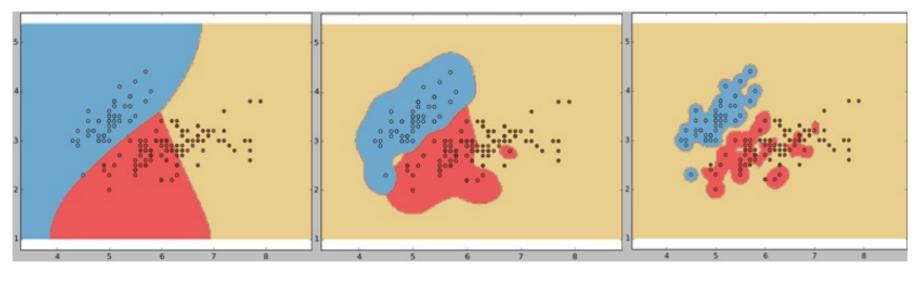
- similarity between points $x_1 = (x1_1, x2_1)$ and $x_2 = (x1_2, x2_2)$ using a function $f(x_1, x_2)$

e.g. Radial Basis Function (RBF) Kernel:

$$K(\mathbf{x},\mathbf{x}') = \exp(-\gamma \|\mathbf{x}-\mathbf{x}'\|^2)$$

 γ is a hyperparameter controlling the *linearity* of the model

Gamma (γ)

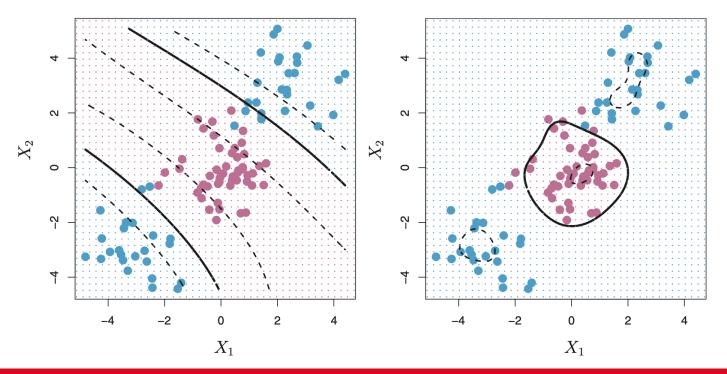


$$\gamma = 0.1$$
 $\gamma = 10$ $\gamma = 100$

Kernels

- Polynomial Kernel
- Gaussian Kernel
- Gaussian RBF Kernel
- Laplace RBF Kernel
- Hyperbolic Tangent Kernel
- Sigmoid Kernel
- Bessel function of first kind Kernel
- ANOVA radial basis Kernel
- Linear Splines Kernel

Applying Kernels



Tetherless World Constellation

In-class exercise

• https://rpi.box.com/s/0oqzzebiiu3z0yfqqnveclrkpnsf1c8q

Thanks!

