

why not change the world?®

Data Mining II Ahmed Eleish Data Science – ITWS/CSCI/ERTH-4350/6350 November 14th, 2024

Tetherless World Constellation Rensselaer Polytechnic Institute

Contents

- Review of data mining concepts
- Linear regression
- k-nearest neighbors classification
- k-means clustering

Types of Data

Type of data	Level of measurement	Examples	
Categorical	Nominal (no inherent order in categories)	Eye colour, ethnicity, diagnosis	
	Ordinal (categories have inherent order)	Job grade, age groups	
	Binary (2 categories – special case of above)	Results of some tests, e.g. positive/negative	
Quantitative	Discrete (usually whole numbers)	Size of household (ratio)	
(NB units of measurement used)	Continuous (can, in theory, take any value in a range, although necessarily recorded to a predetermined degree of precision)	Temperature °C/°F (no absolute zero) (interval) Height, age (ratio)	

Accurate vs. Precise

High Accuracy High Precision Low Accuracy High Precision High Accuracy Low Precision Low Accuracy Low Precision

http://climatica.org.uk/climate-science-information/uncertainty

Data Mining – What it is

- Extracting knowledge from large amounts of data
- Motivation
 - Our ability to collect data has expanded rapidly
 - It is impossible to analyze all of the data manually
 - Data contains valuable information that can aid in decision making
- Uses techniques from:
 - Pattern Recognition
 - Machine Learning
 - Statistics
- Data mining methods must be efficient and scalable (8~10 years ago, data mining could not be done on your Laptop).

Data Mining – Types of Mining

Supervised Learning

- Regression
 - Predict a continuous variable
- Classification
 - Predict a categorical variable (class label)
 - Labeled samples (ground truth) required

Unsupervised Learning

- Clustering
 - Detect structure in dataset
 - Divide samples into groups based on their similarity

Linear Regression

Tetherless World Constellation

Regression

Linear Regression: In regression, fitting covariate and response data to a line is referred to as linear regression.

Covariate: A variable that is possibly predictive of the outcome under study control variable, *explanatory variable, independent variable, predictor* **Response:** dependent variable

Intercept: The expected value of the response variable when the value of the predictor variable is 0.

Slope: the average increase in Y associated with a one-unit increase in X

Reference/Resources:

The Elements of Statistical Learning. Hastie • Tibshirani • Friedman, 2nd Edition. Introduction to Probability and Statistics, 4th Edition by Beaver. Introduction to Statistical Learning with R, 7th Edition (ISLR).

Simple Linear Regression

- Let's take a look at the Least Squares Method for a single covariate (single regression).
- Utilizing the statistical notion of estimating parameters from data points, we find the estimates (coefficients) using the least squares method.
- We will look at evaluating linear models.

Least Squares Method

Equation of line: $\hat{y} = \hat{\beta_0} + \hat{\beta_1}x$

Let *n* be a positive integer. For a given data $(x_1, y_1), ..., (x_n, y_n) \in \mathbb{R} \times \mathbb{R}$,

- we obtain the intercept β_0 and slope β_1 using the least squares method.
- Residual Sum of Squares (RSS), the *i*th residual $e_4 = y_4 \hat{y}_4$

$$RSS = e_1^2 + e_2^2 + \dots + e_n^2$$

RSS =
$$(y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + (y_2 - \hat{\beta}_0 - \hat{\beta}_1 x_2)^2 + \ldots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2$$

More precisely, we minimize RSS

$$RSS = \sum_{i=1}^{n} (y_i - \widehat{\beta_0} - \widehat{\beta_1} x_i)^2$$

Sum of squared distances between (x_i, y_i) and $(x_i, \hat{\beta}_0 + \hat{\beta}_1 x_i)$ over i = 1,...,n

Assessing the Coefficient Estimates

Зee.

True relationship between X and Y: - Where ϵ is a mean-zero random error

Red: true relationship

Dark Blue: least squares regression line

Light Blue: least squares regression lines for multiple random subsets

 $Y = \beta_0 + \beta_1 X + \epsilon.$

Evaluating Linear Models

- Sales vs. TV ad spending
- Sales in 1000s of units
- TV ad spending in 1000s of \$

Evaluating Linear Models

Values of coefficients >> their Std. errors

High t-statistic

	Coefficient	Std. error	t-statistic	p-value
Intercept	7.0325	0.4578	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001

Very low p-value

Hypothesis (more TV ads \rightarrow more sales)

H0 : There is no relationship between X and Y

Ha : There is some relationship between X and Y

Reject the null hypothesis!

Residual Standard Error

- Mean sales \approx 14,000 units
- RSE = 3.26 = 3,260 units good/bad?

Quantity	Value
Residual standard error	3.26
R^2	0.612
F-statistic	312.1

R²

- measures the proportion of the variability in Y that can be explained using X
- has a value between 0,1

sselaer

$$RSE = \sqrt{\frac{1}{n-2}RSS} = \sqrt{\frac{1}{n-2}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}$$

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

TSS =
$$\sum (y_i - \bar{y})^2$$

k-Nearest Neighbors Classification

kNN Classifier

• In the figure a dataset is shown consisting 6 blue and 6 orange observations.

• Our goal is to make a prediction for the point labeled by the black cross.

- Suppose we choose K=3, then KNN will first identify the three observations that are closest to the black cross as shown in the figure.
- This neighborhood is shown as a circle. It consist of 2 blue points and 1 orange point, resulting in estimated probabilities of 2/3 for the blue class and 1/3 for the orange class.
- Hence, kNN will predict that the black cross belongs to the blue class.

1.Image/photo Credit: Introduction to Statistical Learning with Applications in R, 7th Edition, Chapter 2 Reference: Introduction to Statistical Learning with Applications in R, 7th Edition, Chapter 2 – KNN Classifier

6 blue points and 6 orange points

1.Image/photo Credit: Introduction to Statistical Learning with Applications in R, 7th Edition, Chapter 2 Reference: Introduction to Statistical Learning with Applications in R, 7th Edition, Chapter 2 – KNN Classifier

Classification Problem: iris flower

- Classifying Iris Species
- Let's assume a botanist is interested in distinguishing the species of some iris flowers that she has found. She has collected some measurements associated with each iris: length and width of the petals and length and width of sepals.
- She also has the measurements of some irises that have been previously identified by an expert botanist as belonging to the species
 - o Setosa
 - Versicolor
 - Virginica
- Problem: predict iris flower species from physical measurements

Classification Accuracy

• Accuracy = (Number of correct predictions) / (Overall number of predictions)

Evaluation Metrics

- *Precision* = (*True Positive*) / (*True Positive* + *False Positive*)
- Recall = (True Positive) / (True Positive + False Negative)
- F1 = 2 [(Recall * Precision) / (Recall + Precision)]
 - F1 = (True Positive) / [True Positive + 1/2*(False Positive + False Negative)]

k-Means Clustering

k-Means

• k-Means clustering is an unsupervised learning algorithm that, as the name hints, finds a fixed number (k) of clusters in a set of data.

• A *cluster* is a group of data points that are grouped together due to similarities in their features. When using a K-Means algorithm, a cluster is defined by a *centroid*, which is a point (either imaginary or real) at the center of a cluster.

• Every point in a data set is part of the cluster whose centroid is most closely located. To put it simply, K-Means finds *k* number of centroids, and then assigns all data points to the closest cluster, with the aim of keeping the centroids small

Resource: https://blog.easysol.net/machine-learning-algorithms-3/ https://blog.easysol.net/author/acorrea/

randomly chose k examples as initial centroids while true:

create k clusters by assigning each
 example to closest centroid
compute k new centroids by averaging
 examples in each cluster
if centroids don't change:
 break

Resource: MIT 6.0002 lecture 12 (MIT Open Courseware) https://ocw.mit.edu/index.htm

Algorithm 10.1 K-Means Clustering

- 1. Randomly assign a number, from 1 to K, to each of the observations. These serve as initial cluster assignments for the observations.
- 2. Iterate until the cluster assignments stop changing:
 - (a) For each of the K clusters, compute the cluster *centroid*. The kth cluster centroid is the vector of the p feature means for the observations in the kth cluster.
 - (b) Assign each observation to the cluster whose centroid is closest (where *closest* is defined using Euclidean distance).

Reference: Introduction to Statistical Learning with Applications in R, 7_{th} Edition, Chapter 10 – KMeans

Algorithm 10.1 K-Means Clustering

- 1. Randomly assign a number, from 1 to K, to each of the observations. These serve as initial cluster assignments for the observations.
- 2. Iterate until the cluster assignments stop changing:
 - (a) For each of the K clusters, compute the cluster *centroid*. The kth cluster centroid is the vector of the p feature means for the observations in the kth cluster.
 - (b) Assign each observation to the cluster whose centroid is closest (where *closest* is defined using Euclidean distance).

Reference: Introduction to Statistical Learning with Applications in R, $7_{\mbox{th}}$ Edition, Chapter 10 – KMeans

Observations (data) is shown

Step 1 of the algorithm: each observation is randomly assigned to a cluster

Iteration1 Step 2(a): The cluster centroids are computed; these are shown in large colored disks. Initially centroids are almost completely overlapping because the initial cluster assignment were chosen at random

Reference: Introduction to Statistical Learning with Applications in R, $7\,{}^{}_{\rm th}$ Edition, Chapter 10 – KMeans

Ö

Iteration 2, Step 2a

Final Results

Iteration 1 Step 2(b) : each observation is assigned to the nearest centroid

Iteration 2, Step 2(a): the step 2(a) is once again performed, leading to new cluster centroids.

Final Results: the results obtained after ten iterations. You can see the distinct clusters with their centroids.

Image/Photo Credit: Introduction to Statistical Learning with Applications in R, 7th Edition, Chapter 10 – KMeans Reference: Introduction to Statistical Learning with Applications in R, 7th Edition, Chapter 10 – KMeans

Rensselaer

- *k*-Means clustering Animation
- <u>http://shabal.in/visuals/kmeans/6.html</u>

Within-Cluster Sum of Squares (Elbow Method)

Thanks!

Work with your teams!

