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62 3. Linear Regression
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FIGURE 3.1. For the Advertising data, the least squares fit for the regression
of sales onto TV is shown. The fit is found by minimizing the sum of squared
errors. Each grey line segment represents an error, and the fit makes a compro-
mise by averaging their squares. In this case a linear fit captures the essence of
the relationship, although it is somewhat deficient in the left of the plot.

Let ŷi = β̂0 + β̂1xi be the prediction for Y based on the ith value of X .
Then ei = yi− ŷi represents the ith residual—this is the difference between

residual
the ith observed response value and the ith response value that is predicted
by our linear model. We define the residual sum of squares (RSS) as

residual sum
of squares

RSS = e21 + e22 + · · ·+ e2n,

or equivalently as

RSS = (y1− β̂0− β̂1x1)
2+(y2− β̂0− β̂1x2)

2+ . . .+(yn− β̂0− β̂1xn)
2. (3.3)

The least squares approach chooses β̂0 and β̂1 to minimize the RSS. Using
some calculus, one can show that the minimizers are

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
,

β̂0 = ȳ − β̂1x̄,

(3.4)

where ȳ ≡ 1
n

∑n
i=1 yi and x̄ ≡ 1

n

∑n
i=1 xi are the sample means. In other

words, (3.4) defines the least squares coefficient estimates for simple linear
regression.
Figure 3.1 displays the simple linear regression fit to the Advertising

data, where β̂0 = 7.03 and β̂1 = 0.0475. In other words, according to

x-axis: independent numeric variable
y-axis: dependent numeric variable

Look for:
- trend? direction?
- are points tightly grouped?

x-axis: numeric variable
y-axis: numeric variable

Look for:
- structure: groups? group separation? 
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Accurate vs. Precise 

http://climatica.org.uk/climate-science-information/uncertainty 

Accurate vs. Precise
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Regression
Linear Regression: In regression, fitting covariate and response data to a 
line is referred to as linear regression.
Covariate: A variable that is possibly predictive of the outcome under study 
control variable, explanatory variable, independent variable, predictor
Response: dependent variable
Intercept: The expected value of the response variable when the value of 
the predictor variable is 0.
Slope: the average increase in Y associated with a one-unit increase in X

Reference/Resources:
The Elements of Statistical Learning. Hastie • Tibshirani • Friedman, 2nd Edition. 
Introduction to Probability and Statistics, 4th Edition by Beaver.
Introduction to Statistical Learning with R, 7th Edition (ISLR). 
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Simple Linea Regression
• Let’s take a look at the Least Squares Method for a single 
covariate (single regression). 

• Utilizing the statistical notion of estimating parameters from 
data points, we find the estimates (coefficients) using the least 
squares method.

• We will look at evaluating linear models.
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Least Squares Method
Equation of line: !𝑦 = $𝛽! +$𝛽"𝑥

Let n be a positive integer. For a given data (x1,y1), ..., (xn,yn) ∈ ℝ×ℝ, 
- we obtain the intercept 𝛽0 and slope 𝛽1 using the least squares method.
- Residual Sum of Squares (RSS), the ith residual 

Or
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n

∑n
i=1 xi are the sample means. In other

words, (3.4) defines the least squares coefficient estimates for simple linear
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data, where β̂0 = 7.03 and β̂1 = 0.0475. In other words, according to

62 3. Linear Regression

0 50 100 150 200 250 300

5
10

15
20

25

TV

S
al

es
FIGURE 3.1. For the Advertising data, the least squares fit for the regression
of sales onto TV is shown. The fit is found by minimizing the sum of squared
errors. Each grey line segment represents an error, and the fit makes a compro-
mise by averaging their squares. In this case a linear fit captures the essence of
the relationship, although it is somewhat deficient in the left of the plot.
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More precisely, we minimize RSS

RSS = ∑!"#$ (𝑦! −(𝛽% −(𝛽#𝑥!)&

Sum of squared distances between (𝑥!, 𝑦!) and (𝑥! ,(𝛽%+(𝛽#𝑥! ) 
over 𝑖 = 1,...,n 
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Figure 1: obtain !0 and !1 that minimize ∑!"#$ ($# − !0 −!1 &# )
via least squares method

Figure: obtain '𝛽! and'𝛽" that minimize ∑#$"% (𝑦# − '𝛽! −'𝛽"𝑥#) via least squares method
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• We partially differentiate L by 𝛽0 and 𝛽1 and let them be equal 
to zero, we obtain the following equations:

#$
#%&!

= −2 ∑'(") 𝑦' − $𝛽! −$𝛽"𝑥' = 0 Eq(1)

#$
# "#!

= −2 ∑'(") 𝑥' 𝑦' − $𝛽! −$𝛽"𝑥' = 0 Eq(2)

Where the partial derivative is calculated by differentiating each variable and 
regarding the other variables as constants. In this case, 𝛽! and 𝛽" are regarded as 
constants when differentiating L by 𝛽! and 𝛽" respectively. 
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• By solving Eq (1) and Eq (2) when: 
∑'(") (𝑥' − 𝑥̅)* ≠ 0 Eq(3)

i.e., 𝑥" = 𝑥* = ⋯ = 𝑥+ is not true.

Where:

𝑥̅ = "
+
∑'(") 𝑥' 3𝑦 = "

+
∑'(") 𝑦'

• We can obtain:

-𝛽# =
∑!"#
$ (/!0/̅)(2!032)
∑!"#
$ (/!0/̅)

Eq(4)

-𝛽% = .𝑦 - -𝛽%𝑥̅ Eq(5)
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Assessing the Coefficient Estimates

True relationship between X and Y:
- Where 𝜖 is a mean-zero random error

3.1 Simple Linear Regression 63
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FIGURE 3.2. Contour and three-dimensional plots of the RSS on the
Advertising data, using sales as the response and TV as the predictor. The
red dots correspond to the least squares estimates β̂0 and β̂1, given by (3.4).

this approximation, an additional $1,000 spent on TV advertising is asso-
ciated with selling approximately 47.5 additional units of the product. In
Figure 3.2, we have computed RSS for a number of values of β0 and β1,
using the advertising data with sales as the response and TV as the predic-
tor. In each plot, the red dot represents the pair of least squares estimates
(β̂0, β̂1) given by (3.4). These values clearly minimize the RSS.

3.1.2 Assessing the Accuracy of the Coefficient Estimates

Recall from (2.1) that we assume that the true relationship between X and
Y takes the form Y = f(X) + ϵ for some unknown function f , where ϵ
is a mean-zero random error term. If f is to be approximated by a linear
function, then we can write this relationship as

Y = β0 + β1X + ϵ. (3.5)

Here β0 is the intercept term—that is, the expected value of Y when X = 0,
and β1 is the slope—the average increase in Y associated with a one-unit
increase in X . The error term is a catch-all for what we miss with this
simple model: the true relationship is probably not linear, there may be
other variables that cause variation in Y , and there may be measurement
error. We typically assume that the error term is independent of X .
The model given by (3.5) defines the population regression line, which

population
regression
line

is the best linear approximation to the true relationship between X and
Y .1 The least squares regression coefficient estimates (3.4) characterize the
least squares line (3.2). The left-hand panel of Figure 3.3 displays these

least squares
line

1The assumption of linearity is often a useful working model. However, despite what
many textbooks might tell us, we seldom believe that the true relationship is linear.
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FIGURE 3.3. A simulated data set. Left: The red line represents the true rela-
tionship, f(X) = 2 + 3X, which is known as the population regression line. The
blue line is the least squares line; it is the least squares estimate for f(X) based
on the observed data, shown in black. Right: The population regression line is
again shown in red, and the least squares line in dark blue. In light blue, ten least
squares lines are shown, each computed on the basis of a separate random set of
observations. Each least squares line is different, but on average, the least squares
lines are quite close to the population regression line.

two lines in a simple simulated example. We created 100 random Xs, and
generated 100 corresponding Y s from the model

Y = 2 + 3X + ϵ, (3.6)

where ϵ was generated from a normal distribution with mean zero. The
red line in the left-hand panel of Figure 3.3 displays the true relationship,
f(X) = 2 + 3X , while the blue line is the least squares estimate based
on the observed data. The true relationship is generally not known for
real data, but the least squares line can always be computed using the
coefficient estimates given in (3.4). In other words, in real applications,
we have access to a set of observations from which we can compute the
least squares line; however, the population regression line is unobserved.
In the right-hand panel of Figure 3.3 we have generated ten different data
sets from the model given by (3.6) and plotted the corresponding ten least
squares lines. Notice that different data sets generated from the same true
model result in slightly different least squares lines, but the unobserved
population regression line does not change.
At first glance, the difference between the population regression line and

the least squares line may seem subtle and confusing. We only have one
data set, and so what does it mean that two different lines describe the
relationship between the predictor and the response? Fundamentally, the

Red: true relationship

Dark Blue: least squares regression line

Light Blue: least squares regression lines 
for multiple random subsets
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Evaluating Linear Models
62 3. Linear Regression
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Let ŷi = β̂0 + β̂1xi be the prediction for Y based on the ith value of X .
Then ei = yi− ŷi represents the ith residual—this is the difference between

residual
the ith observed response value and the ith response value that is predicted
by our linear model. We define the residual sum of squares (RSS) as

residual sum
of squares

RSS = e21 + e22 + · · ·+ e2n,

or equivalently as

RSS = (y1− β̂0− β̂1x1)
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2. (3.3)

The least squares approach chooses β̂0 and β̂1 to minimize the RSS. Using
some calculus, one can show that the minimizers are

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
,

β̂0 = ȳ − β̂1x̄,

(3.4)

where ȳ ≡ 1
n

∑n
i=1 yi and x̄ ≡ 1

n

∑n
i=1 xi are the sample means. In other

words, (3.4) defines the least squares coefficient estimates for simple linear
regression.
Figure 3.1 displays the simple linear regression fit to the Advertising

data, where β̂0 = 7.03 and β̂1 = 0.0475. In other words, according to

• Sales vs. TV ad spending
• Sales in 1000s of units
• TV ad spending in 1000s 

of $
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Evaluating Linear Models

68 3. Linear Regression

then we can infer that there is an association between the predictor and the
response. We reject the null hypothesis—that is, we declare a relationship
to exist between X and Y—if the p-value is small enough. Typical p-value
cutoffs for rejecting the null hypothesis are 5 or 1%. When n = 30, these
correspond to t-statistics (3.14) of around 2 and 2.75, respectively.

Coefficient Std. error t-statistic p-value
Intercept 7.0325 0.4578 15.36 < 0.0001
TV 0.0475 0.0027 17.67 < 0.0001

TABLE 3.1. For the Advertising data, coefficients of the least squares model
for the regression of number of units sold on TV advertising budget. An increase
of $1,000 in the TV advertising budget is associated with an increase in sales by
around 50 units (Recall that the sales variable is in thousands of units, and the
TV variable is in thousands of dollars).

Table 3.1 provides details of the least squares model for the regression of
number of units sold on TV advertising budget for the Advertising data.
Notice that the coefficients for β̂0 and β̂1 are very large relative to their
standard errors, so the t-statistics are also large; the probabilities of seeing
such values if H0 is true are virtually zero. Hence we can conclude that
β0 ̸= 0 and β1 ̸= 0.4

3.1.3 Assessing the Accuracy of the Model

Once we have rejected the null hypothesis (3.12) in favor of the alternative
hypothesis (3.13), it is natural to want to quantify the extent to which the
model fits the data. The quality of a linear regression fit is typically assessed
using two related quantities: the residual standard error (RSE) and the R2

R2

statistic.
Table 3.2 displays the RSE, the R2 statistic, and the F-statistic (to be

described in Section 3.2.2) for the linear regression of number of units sold
on TV advertising budget.

Residual Standard Error

Recall from the model (3.5) that associated with each observation is an
error term ϵ. Due to the presence of these error terms, even if we knew the
true regression line (i.e. even if β0 and β1 were known), we would not be
able to perfectly predict Y from X . The RSE is an estimate of the standard

4In Table 3.1, a small p-value for the intercept indicates that we can reject the null
hypothesis that β0 = 0, and a small p-value for TV indicates that we can reject the null
hypothesis that β1 = 0. Rejecting the latter null hypothesis allows us to conclude that
there is a relationship between TV and sales. Rejecting the former allows us to conclude
that in the absence of TV expenditure, sales are non-zero.

Values of coefficients >> their Std. errors

High t-statistic

Very low p-value

3.1 Simple Linear Regression 67

In the case of the advertising data, the 95% confidence interval for β0

is [6.130, 7.935] and the 95% confidence interval for β1 is [0.042, 0.053].
Therefore, we can conclude that in the absence of any advertising, sales will,
on average, fall somewhere between 6,130 and 7,940 units. Furthermore,
for each $1,000 increase in television advertising, there will be an average
increase in sales of between 42 and 53 units.
Standard errors can also be used to perform hypothesis tests on the

hypothesis
testcoefficients. The most common hypothesis test involves testing the null

hypothesis of
null
hypothesis

H0 : There is no relationship between X and Y (3.12)

versus the alternative hypothesis
alternative
hypothesis

Ha : There is some relationship between X and Y . (3.13)

Mathematically, this corresponds to testing

H0 : β1 = 0

versus
Ha : β1 ̸= 0,

since if β1 = 0 then the model (3.5) reduces to Y = β0 + ϵ, and X is
not associated with Y . To test the null hypothesis, we need to determine
whether β̂1, our estimate for β1, is sufficiently far from zero that we can
be confident that β1 is non-zero. How far is far enough? This of course
depends on the accuracy of β̂1—that is, it depends on SE(β̂1). If SE(β̂1) is
small, then even relatively small values of β̂1 may provide strong evidence
that β1 ̸= 0, and hence that there is a relationship between X and Y . In
contrast, if SE(β̂1) is large, then β̂1 must be large in absolute value in order
for us to reject the null hypothesis. In practice, we compute a t-statistic,

t-statistic
given by

t =
β̂1 − 0

SE(β̂1)
, (3.14)

which measures the number of standard deviations that β̂1 is away from
0. If there really is no relationship between X and Y , then we expect
that (3.14) will have a t-distribution with n− 2 degrees of freedom. The t-
distribution has a bell shape and for values of n greater than approximately
30 it is quite similar to the normal distribution. Consequently, it is a simple
matter to compute the probability of observing any number equal to |t| or
larger in absolute value, assuming β1= 0. We call this probability the p-value.

p-value

ial association between the pre-

between the predictor and the response. Hence, if we see a small p-value,

Roughly speaking, we interpret the p-value as follows: a small p-value indicates
that it is unlikely to observe such a substant
dictor and the response due to chance, in the absence of any real association

Hypothesis (more TV ads à more sales)

H0 : There is no rela0onship between X and Y 

Ha : There is some rela0onship between X and Y 

Reject the null hypothesis!
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Residual Standard Error

• Mean sales ≈ 14,000 units

RSE = 3.26 = 3,260 units
good/bad?

R2

• measures the proportion of the variability 
in Y that can be explained using X

• has a value between 0,1

3.1 Simple Linear Regression 69

Quantity Value
Residual standard error 3.26
R2 0.612
F-statistic 312.1

TABLE 3.2. For the Advertising data, more information about the least squares
model for the regression of number of units sold on TV advertising budget.

deviation of ϵ. Roughly speaking, it is the average amount that the response
will deviate from the true regression line. It is computed using the formula

RSE =

√
1

n− 2
RSS =

√√√√ 1

n− 2

n∑

i=1

(yi − ŷi)2. (3.15)

Note that RSS was defined in Section 3.1.1, and is given by the formula

RSS =
n∑

i=1

(yi − ŷi)
2. (3.16)

In the case of the advertising data, we see from the linear regression
output in Table 3.2 that the RSE is 3.26. In other words, actual sales in
each market deviate from the true regression line by approximately 3,260
units, on average. Another way to think about this is that even if the
model were correct and the true values of the unknown coefficients β0

and β1 were known exactly, any prediction of sales on the basis of TV
advertising would still be off by about 3,260 units on average. Of course,
whether or not 3,260 units is an acceptable prediction error depends on the
problem context. In the advertising data set, the mean value of sales over
all markets is approximately 14,000 units, and so the percentage error is
3,260/14,000 = 23%.
The RSE is considered a measure of the lack of fit of the model (3.5) to

the data. If the predictions obtained using the model are very close to the
true outcome values—that is, if ŷi ≈ yi for i = 1, . . . , n—then (3.15) will
be small, and we can conclude that the model fits the data very well. On
the other hand, if ŷi is very far from yi for one or more observations, then
the RSE may be quite large, indicating that the model doesn’t fit the data
well.

R2 Statistic

The RSE provides an absolute measure of lack of fit of the model (3.5)
to the data. But since it is measured in the units of Y , it is not always
clear what constitutes a good RSE. The R2 statistic provides an alternative
measure of fit. It takes the form of a proportion—the proportion of variance
explained—and so it always takes on a value between 0 and 1, and is
independent of the scale of Y .
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3,260/14,000 = 23%.
The RSE is considered a measure of the lack of fit of the model (3.5) to

the data. If the predictions obtained using the model are very close to the
true outcome values—that is, if ŷi ≈ yi for i = 1, . . . , n—then (3.15) will
be small, and we can conclude that the model fits the data very well. On
the other hand, if ŷi is very far from yi for one or more observations, then
the RSE may be quite large, indicating that the model doesn’t fit the data
well.

R2 Statistic

The RSE provides an absolute measure of lack of fit of the model (3.5)
to the data. But since it is measured in the units of Y , it is not always
clear what constitutes a good RSE. The R2 statistic provides an alternative
measure of fit. It takes the form of a proportion—the proportion of variance
explained—and so it always takes on a value between 0 and 1, and is
independent of the scale of Y .

70 3. Linear Regression

To calculate R2, we use the formula

R2 =
TSS− RSS

TSS
= 1− RSS

TSS
(3.17)

where TSS =
∑

(yi − ȳ)2 is the total sum of squares, and RSS is defined
total sum of
squaresin (3.16). TSS measures the total variance in the response Y , and can be

thought of as the amount of variability inherent in the response before the
regression is performed. In contrast, RSS measures the amount of variability
that is left unexplained after performing the regression. Hence, TSS−RSS
measures the amount of variability in the response that is explained (or
removed) by performing the regression, and R2 measures the proportion
of variability in Y that can be explained using X . An R2 statistic that is
close to 1 indicates that a large proportion of the variability in the response
has been explained by the regression. A number near 0 indicates that the
regression did not explain much of the variability in the response; this might
occur because the linear model is wrong, or the inherent error σ2 is high,
or both. In Table 3.2, the R2 was 0.61, and so just under two-thirds of the
variability in sales is explained by a linear regression on TV.
The R2 statistic (3.17) has an interpretational advantage over the RSE

(3.15), since unlike the RSE, it always lies between 0 and 1. However, it can
still be challenging to determine what is a good R2 value, and in general,
this will depend on the application. For instance, in certain problems in
physics, we may know that the data truly comes from a linear model with
a small residual error. In this case, we would expect to see an R2 value that
is extremely close to 1, and a substantially smallerR2 value might indicate a
serious problem with the experiment in which the data were generated. On
the other hand, in typical applications in biology, psychology, marketing,
and other domains, the linear model (3.5) is at best an extremely rough
approximation to the data, and residual errors due to other unmeasured
factors are often very large. In this setting, we would expect only a very
small proportion of the variance in the response to be explained by the
predictor, and an R2 value well below 0.1 might be more realistic!
The R2 statistic is a measure of the linear relationship between X and

Y . Recall that correlation, defined as
correlation

Cor(X,Y ) =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
, (3.18)

is also a measure of the linear relationship between X and Y .5 This sug-
gests that we might be able to use r = Cor(X,Y ) instead of R2 in order to
assess the fit of the linear model. In fact, it can be shown that in the simple
linear regression setting, R2 = r2. In other words, the squared correlation

5We note that in fact, the right-hand side of (3.18) is the sample correlation; thus,

it would be more correct to write ̂Cor(X, Y ); however, we omit the “hat” for ease of
notation.
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Random Forest
• Random Forest is based on decision trees.

• In Random Forest we build large number of trees, where 
each tree is based on a bootstrap sample.

• Then, what we do is we average those predictions 
together in order to get the predictive probabilities of each 
class across all the different trees. 
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Random Forest

Cons:

- Speed (it can be slow; it has to build large numbers of 
trees)

- Interpretability (it can be hard to interpret in the sense that 
you have large number of trees that are averaged together
and those trees represent the bootstrap samples and are 
complicated to understand)
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Random Forest

Image Resource: https://commons.wikimedia.org/wiki/File:Random_forest_diagram_complete.png
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Random Forest

The original algorithm was created in 1995 by Tin Kam Ho.

An extension of the algorithm was developed by Leo 
Breiman and Adele Cutler, who registered "Random Forests" 
as a trademark in 2006

- http://www.stat.berkeley.edu/~breiman/RandomForests/

http://www.stat.berkeley.edu/~breiman/RandomForests/
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Random Forest Algorithm
- Let Ntrees be the number of trees to build
for each of Ntrees iterations:

1. Select a new bootstrap sample from training set
2. Grow an un-pruned tree on this bootstrap.
3. At each internal node, randomly select mtry predictors and

determine the best split using only these predictors.
4. Do not perform cost complexity pruning. Save tree as is, along side those built 

thus far.

Output overall prediction as the average response
(regression) or majority vote (classification) from all
individually trained trees

Ref: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5f31bcc21ab2155c084527648d436b036126b30d

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5f31bcc21ab2155c084527648d436b036126b30d
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Random Forest

Image/ Photo Credit: Albert A. Montillo 
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Random Forest exercise

Code: https://rpi.box.com/s/bhdyyq3otux7kurbn7jnf6jrestrmle3

https://rpi.box.com/s/bhdyyq3otux7kurbn7jnf6jrestrmle3
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Thanks!
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