BLINKS: Ranked Keyword Searches on Graphs

Hao He, Haixun Wang, Jun Yang, and Philip S. Yu
By Zhenning Shangguan
Mar-24-2009
Overview

• Problem and challenges
• Contributions
• Optimal graph search strategies
• Bi-level indexing and searching in BLINKS
• Evaluation
Problems & Challenges

• Ranked (top-k) keyword search over general node-labeled directed graphs

• Challenges:
 – Heuristic graph exploration strategies \rightarrow poor performance for certain graphs
 – No full usage of indexing \rightarrow slow search processing
 – Naive indexing mechanism \rightarrow high storage requirement
Definitions

• **Query Answers**

 Definition 1. Given a query \(q = (w_1, \ldots, w_m) \) and a directed graph \(G \), an answer to \(q \) is a pair \((r, (n_1, \ldots, n_m)) \), where \(r \) and \(n_i \)'s are nodes (not necessarily distinct) in \(G \) satisfying the following properties:

 (Coverage) For every \(i \), node \(n_i \) contains keyword \(w_i \).

 (Connectivity) For every \(i \), there exists a directed path in \(G \) from \(r \) to \(n_i \).

• **Top-k Query**

 Definition 2. Given a query and a scoring function \(S \), the (best) score of a node \(r \) is the maximum \(S(T) \) over all answers \(T \) rooted at \(r \) (or 0 if there are no such answers). An answer rooted at \(r \) with the best score is called a best answer rooted at \(r \). A top-k query returns the \(k \) nodes in the graph with the highest best scores, and, for each node returned, the best score and a best answer rooted at the node.
Definitions

• Scoring Function

\[
S(T) = f(\tilde{S}_r(r)) + \sum_{i=1}^{m} \tilde{S}_n(n_i, w_i) + \sum_{i=1}^{m} \tilde{S}_p(r, n_i)
\]

• Example

(A) The graph G

(B) A query $q = (c, d)$

(C) Answer trees $T_1 = <3, (3, 6)>$, $T_2 = <2, (12, 4)>$.
Contributions

• Optimal search strategy
 – Equi-distance expansion within each cluster
 – Cost-balanced expansion across clusters

• Combining indexing with search
 – Reduces running time of backward search
 – Supports forward search – search becomes bidirectional

• Graph partitioning-based bi-level indexing
 – Block level
 – Intra block level

• Performance
 – Orders-of-magnitude improvement
Optimal Graph Search Strategies

• Equi-distance expansion within each cluster
 – The node u to visit for cluster E_i (by following edge $<u,v>$ for some v in E_i) is the node with the shortest distance (among all nodes not in E_i) to the cluster origin O_i.

• Cost-balanced expansion across clusters
 – The cluster E_i to expand next is the one with the smallest cardinality
Bi-level Indexing and Searching

• Portal nodes
 – In-portal nodes: have at least one incoming edge from another block and at least one outgoing edge in this block
 – Out-portal nodes: have at least one outgoing edge to another block and at least one incoming edge from this block
Intra-block Index

- Intra-block keyword-node lists
 - List of nodes that can reach keyword w
- Intra-block node-keyword map
 - Hashmap storing the shortest distance from node u to keyword w
- Intra-block portal-node lists
 - List of nodes that can reach out-portal p
- Intra-block node-portal distance map
 - Hashmap storing the shortest distance from node u to the closest out-portal
Block Index

• Keyword-block lists
 – List of blocks containing keyword w

• Portal-block lists
 – Lists of blocks containing node p as an out-portal
Searching with Bi-level Index

• Backward expansion
 – Keyword-block list \rightarrow intra-block keyword-nodes lists \rightarrow portal-block lists \rightarrow portal-node list

• Forward expansion
 – Intra-block node-portal distance map + intra-block node-keyword map

• Pruning
 – Lower bound from search: intra-block keyword-nodes lists
 – Lower bound from index: Intra-block node-keyword map + Intra-block node-portal distance map
Graph Partitioning

• General guidelines
 – Keep the total number of portals low
 – Keep blocks balanced in size

• BFS-based partitioning
 – start from an unassigned node and perform BFS
 – add to this block any nodes that we visit but have not been previously assigned to any block, until the given block size is reached

• METIS-based partitioning
 – Use the METIS algorithm to avoid the poor starting nodes of BFS-based partitioning
Evaluation

- DBLP Dataset
Evaluation

- IMDB Dataset
Review

- Relevance: 6 (for SW), 8 (for general AI)
- Significance: 8
- Technical Soundness: 8
- Novelty: 8
- Quality of Evaluation: 7
- Clarity: 9
- Overall: 8
- Review Confidence: 5
Relevance – 7 (avg)

• Focuses on ranked keyword search on general (node-labeled directed) graphs
 – Important topic in DB and Searching
 – Indexing and searching mechanisms might be applied to the searching of semantic web data (RDF & OWL graph model can be considered as a node-labeled and edge-labeled graph)
Significance - 8

- Order-of-magnitude improvement on search performance
- Reduced space requirement
- Useful on large graphs, and thus the huge amount of open linked raw data on the (Semantic) Web
Technical Soundness - 8

• Solutions presented are technically sound
• Theorems and lemmas given as conclusions, while detailed and complete proof can be found in the accompanied technical report
• Space complexity of the constructed indices are formally always analyzed
• Time complexity of the bi-level index based algorithm is not explicitly given, backed up only by evaluations
Novelty - 8

• Major contributions are the bi-level indexing scheme and corresponding search algorithm
• State-of-the-art work in exploiting indices extensively to accelerate keyword searches on general graphs
Quality of Evaluation - 7

• Two specialized datasets (DBLP & IMDB) might not be representative enough, need graphs in other fields (if any)
• Characteristics of the synthesized queries (Q_1 – Q_{10}) are not so clear
• Orders-of-magnitude performance improvements may be debatable with so few query samples tested
Clarity - 9

- Very neat and understandable paper
- Due to space constraints, some technical proofs and formal analysis are omitted on purpose, which can be found in the TR
- Use single-level indexing as an basis
- Occasional obvious typos and minor errors
 - E.g., intra-block portal-node list in Fig. 6 is missing one list element
Overall – 8

• Qualitatively, this is a technically novel and strong research paper that solves a common problem in the searching field. With extensions, it may be applicable in various fields

• Quantitatively,

\[\frac{\sum \text{ratings}}{\# \text{criteria}} \approx 8 \]
Confidence - 5

• No expertise in ranked keyword search field
• Lack of knowledge about the state-of-the-art work in this area
• Due to time constraints, only able to follow some of the formal proof and analysis presented in the TR
Q & A

• Thanks!