TWC-SWQP: A Semantic Portal for Next Generation Environmental Monitoring (Technical Report)

We present a semantic technology-based approach to emerging environmental information systems. We used our linked data approach in the Tetherless World Constellation Semantic Water Quality Portal (TWC-SWQP). Our integration scheme uses a core domain ontology and integrates water data from different authoritative sources along with multiple regulation ontologies to enable pollution detection and monitoring. An OWL-based reasoning scheme identifies pollution events relative to user chosen regulations. Our approach also captures and leverages provenance to improve transparency. In addition, semantic water quality portal features provenance-based facet generation, query answering and data validation over the integrated data via SPARQL. We introduce the approach and the water portal, and highlight some of its potential impacts for the future of environmental monitoring systems.

View Publication

Associated Projects

We present a semantic technology-based approach to emerging environmental information systems. We used our linked data approach in the Tetherless World Constellation Semantic Water Quality Portal (TWC-SWQP). Our integration scheme uses a core domain ontology and integrates water data from different authoritative sources along with multiple regulation ontologies to enable pollution detection and monitoring. An OWL-based reasoning scheme identifies pollution events relative to user chosen regulations. Our approach also captures and leverages provenance to improve transparency.

The Inference Web is a Semantic Web based knowledge provenance infrastructure that supports interoperable explanations of sources, assumptions, learned information, and answers as an enabler for trust.

Citation