Towards Semantic Search on the Web: A Survey

Zhenning Shangguan

Apr. 14, 2009
Outline

• Introduction

• Existing Systems

• Technological Anatomy

• Conclusion
Introduction

• What is Semantic Search?
 – Users
 • Ordinary users
 • High-end users
 – Input
 • Keywords
 • Formal queries
 • Natural language questions
 – Output
 • URLs to (semantic) web documents
 • URIs to semantic entities
 • Snippet of KBs
 – Scale
 • Standalone applications
 • Intranet portals
 • Web
Introduction

• Where are the “semantics”?
 – Ontologies
 • Directly search for ontologies
 • Keyword disambiguation
 • Query formulation
 – Query & store facilities
 • Triple/quad store as repositories
 • Formal queries to find entities/relations
 – Reasoning
 • Identity consolidation using IFPs
 • Class subsumption reasoning to help navigation
 • Web-scale reasoning to find hidden knowledge
“Semantic Search” Systems

Can we arrive here?
PowerSet

• Enable ordinary people to interact with information naturally and effectively (Pell ’07)
• Combine deep NLP and scalable search technology
 – Interpret the web
 – Index the interpreted web
 – Interpret the queries
 – Search by matching
• Information extracted from Wikipedia, and search results integrated from various sources (e.g., FreeBase)
Swoogle

• Semantic web documents & metadata search engine for high-end users (Li et al. ’04)
• Crawler-based IR system on the semantic web
 – Crawls the semantic web (SWDs & SWTs)
 – Indexing (traditional IR techniques)
 – Ranking (OntoRank based on Rational Surfer Model)
 – Querying using keywords
• Approx 2.9 million SWDs indexed
Falcons

- Semantic web objects & concepts (RDF mainly) search engine for high-end users (Cheng ’06 ’08)
- Mostly like Swoogle, with highlighting features
 - Class hierarchy based navigation among ontologies (class subsumption reasoning)
 - Comprehensive text descriptions of semantic web objects (RDF sentence) (Zhang ’07)
 - Semantic web object summarization
- Approx 10 million SWDs indexed
SearchMonkey

• Leverage structured metadata to enrich presentations of search results (Mika ’08)
• Aim to create an ecosystem of publishers, developers and end-users
 – Publishers generate structured metadata
 • Standard SW technologies, e.g., RDFa, SIOC, etc
 – Developers create apps using these metadata
 – End-users enhance searching experience
• Web-scale platform, integrated tightly with the core search engine of Yahoo!
Technological Anatomy

• Components of a web search engine (Brin ’98)
 – Crawling
 – Indexing
 – Storage
 – Ranking

• What about the search applications on the Semantic Web?
Crawling

• Different kinds of documents exist on the Semantic Web
• Different popularities of different types of documents
• Where to find an efficient and scalable crawler that can best harvest knowledge from the Semantic Web?
Crawling

- **Slug (or Scutter) (Dodds ’03)**
 - Configurable, flexible, and modular framework
 - Implemented in Java using Jena API
 - RDF vocabulary for describing configuration & activity
- **Hybrid Semantic Web Harvesting Framework (Li ’06)**
 - Integration of several harvesting frameworks
 - Meta crawling
 - Bounded HTML crawling
 - RDF crawling
 - Starting seed URLs provided via manual submission
 - Harvested SWDs as training data to generate new seed URLs
Crawling

• MultiCrawler (Harth ’06)
 – Hybrid crawling
 • Semantic documents
 • Web pages with free texts
 – Crawling & indexing contains 5 steps
 • Fetching, detecting, transforming, indexing, extracting
 • Textual information also transformed and indexed
 – Parallelized and distributed crawling

• Semantic Sitemap (Cyganiak ’07)
 – Extension to the sitemap protocol
 – State where the RDF data is, and alternative methods to access it (dumps, SPARQL endpoints)
Indexing

• Inverted Indexing
 – Language processing based on variations of bag-of-words model or probabilistic linguistic model
 – VSM model to calculate term-document relevance
 – Swoogle (Li et al ’04), Semplore (Zhang et al ’07)

• Refined inverted indexing
 – Pure IR style indexing faces the problem of ambiguity
 – SENSE: inverted index for word meaning (Basile ’08)
 • Lexical level
 • Word meaning level – wordnet
 • Named entity level – named entity recognition
Storage

• SWSE uses YARS as quadruple repository (Harth ’08)
• Index quadruples to store provenance information with triples
• Two sets of indexes
 – Lexicon: covers string representation of RDF nodes, enables fast retrieval of RDF nodes
 – Quad index: covers access patterns of RDF quadruples
Ranking

• Most of the existing ranking schemes are variations of PageRank
 – Swoogle (Li et al ’05)
 • Based on Rational Surfer Model
 • Three levels of granularity: docs, terms, RDF sub-graphs
 – ReConRank (Hogan et al ’06)
 • Resource Rank: ranking on focused sub-graph (Kleinberg ’99)
 • Context Rank: logically treating context as resource nodes, and generate implicit links for ranking
Query Formulation

• Domain ontology based interpretation
 – High precision, low recall solutions
 – No extensibility, domain dependent
 – No portability, dedicated to certain platform
 – Examples:
 • Generate formal queries using templates (Lei ’06)
 • Translate keywords to conjunctive formal queries (Tran ’08)

• Query ranking
 – Based on sub-graph matching algorithms
 – For performance, indexing sometimes needed
 – Balance between precision and recall
 – Examples:
 • SPARK (Zhou ’08)
 • Q2Semantics (Wang ’08)
Reasoning

• Controversial topic
 – Computational expenses vs. extra credits?
• Some reasoning are employed
 – Identity consolidation in SWSE (Hogan ’08)
 – Class subsumption reasoning in Falcons (Cheng ’08)
 – MaRVIN: web-scale online massive inference (Oren ’08)
• Some attempts to integrate reasoning with search
 – IR on the web should be automated by binding search and inference together (Mayfield & Finin ’03)
 – Reasoning with limited rationality is truly rational on the web scale (Fensel & Harmelen ’07)
Conclusion

• No clear definition of semantic search exists
 – Search for semantic documents on the web
 • Mixture with traditional web search (due to current maturity of SW)
 – Search with the help of semantic technologies
 • Merging trend of enhancing IR with semantics, e.g., SearchMonkey (Mika ’07)
 – Search for knowledge on the web
 • NAGA (Weikum ’08)
 – Integration of IR and DB to build world-wide KB to support knowledge search
Conclusion

• Techniques from IR and other communities widely adopted
 – Simply treat semantic documents and entities as web documents and words
 – Many semantic search engines use inverted index
 – Searching based on string matching techniques
 – Ranking based on graph link analysis
 • But how can we do KnowledgeRank on the global web?
Conclusion

• Benefits of semantic technologies have not shown explicitly
 – Searching for semantic web documents might only benefit knowledge engineers
 • Ordinary users cannot feel the semantic values directly
 – Semantics are often used during query formulation
 • computationally expensive and domain dependent
 – Web scale knowledge extraction and integration is still challenging (Weikum ’08, Decker ’08)
 • Ongoing efforts of automated ontology learning using NLP and ML, but with limited range and partial success
 – Some researchers believe semantics helps in automating the traditional searching procedure
 • keyword → list of pages → keyword refinement → search again
Conclusion

- Scalability may be a big issue
 - Engineering problem vs. Research problem
 - Current repositories and query languages does not scale to “frillions” of triples
 - If reasoning is favored, needs to sacrifice soundness and completeness for performance

- Often lack of convincing evaluation
 - Hard to evaluate systems running in web scale
 - Synthesized data may not reflect real world
Questions

• Thanks