Assignment 7: Data Analytics (Spring 2018) (20% written)
Due: FRIDAY Apr 20, 2018 (by 5pm ET)

Submission method: written by LMS
Please use the following file naming for electronic submission:
DataAnalytics2018_A7_YOURFIRSTNAME_YOURLASTNAME.xxx, etc.

Late submission policy: If you are more than 14 days late it is likely that you will not
have your grade for this assignment included in your final grade before they need to
be submitted.

Note: Your assignment should be the result of your own individual work. Take care to avoid
plagiarism ("copying"), and include references to all web resources, texts, and class
presentations. You may discuss the project with other students, but do not take written
notes during these discussions, and do not share your written assignment or presentation
before the class they are presented in.

General assignment: Predictive and Prescriptive data analytics. You should develop and
validate predictive models (regression, classification, clustering – using one or more of the
methods covered in class to date or one of your choosing) for two of the five (the Wine
Quality contains red wine and white wine datasets) datasets below and apply them for
decision purposes. Please use the section numbering below for your written submission
for this assignment. References – websites, papers, packages, data refs...
http://archive.ics.uci.edu/ml/datasets/Bank+Marketing,
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29,
http://archive.ics.uci.edu/ml/datasets/Wine+Quality,

1. Exploratory Data Analysis (3%)
 Explore the statistical aspects of both datasets. Analyze the distributions and provide
 summaries of the relevant statistics. Perform any cleaning, transformations,
 interpolations, smoothing, outlier detection/ removal, etc. required on the data. Include
 figures and descriptions of this exploration and a short description of what you
 concluded (e.g. nature of distribution, indication of suitable model approaches you
 would try, etc.). Min. 3/4 page text + graphics (required).

2. Model Development, Validation, Optimization and Tuning (14%)
 Choose two (4000-level*) or three (6000-level) or more models. Explain why you chose
 them. Construct the models, test and validate them. Explain the validation approach.
 You can use any method(s) covered in the course. Compare model results if applicable.
 Report the results of the model fits (coefficients, graphs, trees, etc.), predictors, and
 statistics. Min. 3 pages of text + graphics (required). * 4000-level will receive extra
 credit for 6000-level responses.

3. Decisions (3%)
 Describe your conclusions in regard to the model fit, prediction and how well (or not) it
 could be used for decisions and why. Min. 3/4 page of text + graphics.