The Virtual Observatory *Exposed*

Peter Fox*

*HAO/ESSL/NCAR

Thanks to Deborah McGuinness$, Luca Cinquini%, Patrick West*, Jose Garcia*, Tony Darnell*, James Benedict$, Don Middleton%, Stan Solomon*, eGY and others.

$McGuinness Associates

#Knowledge Systems and AI Lab, Stanford Univ.

%SCD/CISL/NCAR
Outline

• Terminology and general introduction
• Where is the need coming from?
• What should a VO do?
• Inside VOs (in Geosciences)
• Final remarks
Terminology

- Workshop: A Virtual Observatory (VO) is a suite of software applications on a set of computers that allows users to uniformly find, access, and use resources (data, software, document, and image products and services using these) from a collection of distributed product repositories and service providers. A VO is a service that unites services and/or multiple repositories.

- VxOs - x is one discipline, domain, community, country

- NB: VO also refers to Virtual Organization
eGY definition

- The purpose of a Virtual Observatory is to increase efficiency, and enable new science by greatly enhancing access to data, services, and computing resources.
- A Virtual Observatory is a suite of software applications on a set of computers that allows users to uniformly find, access, and use resources (data, documents, software, processing capability, image products, and services) from distributed product repositories and service providers.
- A Virtual Observatory may have a single subject (for example, the Virtual Solar Observatory) or several grouped under a theme (the US National Virtual Observatory, http://www.us-vo.org/, which is for astronomy). A Virtual Observatory will typically take the form of an internet portal offering users features among the following.
 - Tools that make it easy to locate and retrieve data from catalogs, archives, and databases worldwide
 - Tools for data analysis, simulation, and visualization
 - Tools to compare observations with results obtained from models, simulations, and theory.
 - Interoperability: services that can be used regardless of the clients computing platform, operating system, and software capabilities
 - Access to data in near real-time, archived data, and historical data.
 - Additional information - documentation, user-guides, reports, publications, news, and so on.
- Virtual observatories are in varying states of development around the world - relatively well developed in some areas, while still a novelty in others. In the former case, eGY can be useful for publicizing and promoting greater use of the existing capabilities. In the latter case, eGY can be used to justify and stimulate the development of new capabilities. In all cases, eGY can be useful for informing the provider/user communities, for coordinating activities, and for setting and achieving goals.
Data: Diversity, Integration, Size, …

- Data policies are still highly variable or non-existent - how can data be managed to solve challenging scientific problem, societal problems without the continued need for a scientist to know the details of complex data management systems?
- Not just large (well organized, long-lived, well-funded) projects/programs want to make their data available.
- What does a large-scale, integrated, scientific data repository look like today?
 - Most data still created in a manner to simplify generation, not access or use.
 - Leads to very diverse organization of data; files, directories, metadata, emails, etc.
 - Source/origin management is driven by meta-mechanisms for integration, interoperability (but still need performance).

Need for VOs and size matters; personal data management is as big, or bigger problem as source data management;

“my<VO>.org”
What should a VO do?

• Make “standard” scientific research much more efficient.
 - Even the principal investigator (PI) teams should want to use them.
 - Must improve on existing services (mission and PI sites, etc.). VOs will not replace these, but will use them in new ways.

• Enable new, global problems to be solved.
 - Rapidly gain integrated views from the solar origin to the terrestrial effects of an event.
 - Find data related to any particular observation.
 - (Ultimately) answer “higher-order” queries such as “Show me the data from cases where a large coronal mass ejection observed by the Solar-Orbiting Heliospheric Observatory was also observed in situ.” (science-speak) or “What happens when the Sun disrupts the Earth’s environment” (general public)
Virtual Observatories

- Conceptual examples:
 - In-situ: Virtual measurements
 - Related measurements
 - Remote sensing: Virtual, integrative measurements
 - Data integration

- Both usage patterns lead to additional data management challenges at the source and for users; now managing virtual ‘datasets’
Observations of the solar atmosphere

Near real-time data from Hawaii from a variety of solar instruments, as a valuable source for space weather, solar variability and basic solar physics

120 users
300,000 datasets
10TB +
Importance of (interface) stds - early days of VxOs
Importance of (interface) stds - the IVoA approach

- VOTable
- Simple Image Access Protocol
- Simple Spectrum Access Protocol
- Simple Time Access Protocol

VO App$_1$ VO App$_2$ VO App$_3$

DB$_1$ DB$_2$ DB$_3$... DB$_n$
Federation

VO₁

VO₂

VO₃

VO₄

DB₁

DB₂

DB₃

......

DBₙ
Importance of (interface) stds - Semantic VOs - e.g. VSTO

Semantic mediation layer - VSTO, MMI
Education, clearinghouses, other services, disciplines, etc.

Semantic mediation layer - SWEET, ...

VO\textsubscript{1} \quad \text{VO}\textsubscript{2} \quad \text{VO}\textsubscript{3}

DB\textsubscript{1} \quad DB\textsubscript{2} \quad DB\textsubscript{3} \quad \ldots \quad DB\textsubscript{n}
Issues for Virtual Observatories

- Providing for multiple VOs: consider federating/aggregating rather than one-on-one
- Scaling to large numbers of data providers
- Crossing disciplines
- Security, access to resources, policies
- Branding and attribution - who gets the credit? Who is the owner of the data? Is this an authoritative source?
- Provenance/derivation - propagating key information as it passes through a variety of services, copies of processing algorithms, etc.
- Data quality, preservation, stewardship, rescue
- Funding for participation - how to leverage existing efforts
- Interoperability at a variety of levels (~3)

Semantic Web: ontologies, reasoning, etc. are one approach to address many of these issues
Data Workflow #1a

Input Step 1 of 3: Choose Instrument

Please select an instrument

You may filter the instruments selection by one of the following criteria:

Filter by Physical Domain: —No Filter—
Filter by Instrument Type: —No Filter—

Show Instrument Code
Reload

[?] Instrument:
- OpticalInstrument > Interferometer > FabryPerot > Arecibo P.R. Fabry-Perot
- OpticalInstrument > Interferometer > FabryPerot > Millstone Hill Fabry-Perot
- OpticalInstrument > Interferometer > FabryPerot > Peach Mountain Fabry-Perot
- OpticalInstrument > Photometer > Chromospheric Helium Imaging Photometer
- OpticalInstrument > Photometer > MK3-K Coronameter
- OpticalInstrument > Photometer > MK4-K Coronameter
- OpticalInstrument > Photometer > H-alpha prominence and solar disk monitor
- Radar > IncoherentScatterRadar > Irkutsk Russia I.S. Radar
Data Workflow #1c

Data Request Summary
1. Parameter: NeutralTemperature
2. Start Date: 2000/05/01
 Stop Date: 2000/05/11
3. Instrument: Millstone Hill Fabry-Perot

Available Output
- Data Files: STREAM [7] DAS [?] INFO [?] TAB [?] OPeNDAP [?] IDL [?] FLAT [?
- Data Plots: Time Series [7]

Change Input
Click on the Back button to change your data selection, or Cancel to end the workflow.

Instrument: 53 - Irkutsk Russia I.S. Radar
Operating Modes:
- 53/5B01 - Na Te Ti V1
Parameters:
- 560 - te - Electron temperature
Starting: February 06, 1999
Ending: February 13, 1999

These plots are produced for visual browsing of the data and should not be used in publications without citing the data provider and CEDARWEB.
Modern VOs and Data Frameworks NOT just for outflow!!

- WAS

- NOW
Final remarks

- Many geoscience VOs are in production
 - see eGY/VO poster (near this room)
- VO conference - April 2007 in Denver, CO
- e-monograph to document state of VOs
- Ongoing activities for VOs through 2008 under the auspices of eGY

- Contact pfox@ucar.edu
Garage
Lessons learned

- Users, users, users
- Use cases, use case, use cases
- Same framework for all aspects of data and information flow
- Rapid development of intelligent lightweight framework and rely on services to do heavy-lifting
- Job does not end when the user gets the data (still working on this)
Lessons learned/ best practices

• A little semantics goes a LONG way, and a little more goes even further
• Interoperability: the few things we have to agree upon so that we need NOT agree on anything else (EC, 2005)
• Data management
• Communities
 – Providers and users are peers
 – Vetting of ontology - diverse community required
• People
• Software
 – We built and ‘trashed’ three prototypes in very short timeframes
 – Framework is independent of classes and individuals in ontology
What’s new in the VSTO?

• Datasets alone are not sufficient to build a virtual observatory: VSTO integrates tools, models, and data
• VSTO addresses the interface problem, effectively and scalably
• VSTO addresses the interdisciplinary metadata and ontology problem - bridging terminology and use of data across disciplines
• VSTO leverages the development of schema that adequately describe the
 • syntax (name of a variable, its type, dimensions, etc. or the procedure name and argument list, etc.),
 • semantics (what the variable physically is, its units, etc.) and
 • pragmatics (or what the procedure does and returns, etc.) of the datasets and tools.
• VSTO provides a basis for a framework for building and distributing advanced data assimilation tools
Exploring the ontology
Welcome to the Virtual Solar Terrestrial Observatory

The Virtual Solar Terrestrial Observatory (VSTO) is a unified semantic environment serving data from diverse data archives in the fields of solar, solar-terrestrial, and space physics (SSTSP), currently:

- Upper atmosphere data from the **CEDAR** (Coupling, Energetics and Dynamics of Atmospheric Regions) archive
- Solar corona data from the **MLSO** (Mauna Loa Solar Observatory) archive

VSTO Data Access

VSTO is a collaboration of the **ESSL/HAO** (High Altitude Observatory) and **CISL/SCD** (Scientific Computing Division) divisions at NCAR with McGuiness & Associates, funded by the National Science Foundation.

User: guest | *VSTO Home* | *VSTO Project Web Site* | *Contact Us*

VSTO Portal Software version 1.0 © UCAR, all rights reserved.

Virtual Solar Terrestrial Observatory, funded by the National Science Foundation
Languages and tools

• Semantic Web Languages
 - OWL Web Ontology Language (W3C)
 - RDG
 - OWL-S Messaging/services (Submitted W3C note)
 - SWSL/SWSF
 - WSMO/WSMF
 - ODM/ODD Ontology Definition Metamodel (OMG)
 - Editors: Protégé, SWOOP, Medius, Cerebra Construct, SWeDE

• Reasoners: Pellet, Racer, Medius KBS

• Other Tools for Semantic Web
 - Search: SWOOGLE swoogle.umbc.edu
 - Other: Jena, SeSAME, Eclipse, KOWARI
 - Collaboration: planetont.org

• Emerging Semantic Standards for Earth Science
 - SWEET, VSTO, MMI, …
Provenance

A device that measures a physical phenomenon or parameter. At a minimum, it possesses a detector which produces a signal from which the desired quantity is calculated or inferred. The detector signal possesses the information needed to either obtain the value of the phenomenon (e.g., temperature: a voltage is converted into a temperature unit) or infer its value using further processing and computation (magnetic fields: detector intensities at a different wavelengths and...
Integrative use-cases:

Find data which represents the state of the neutral atmosphere anywhere above 100km and toward the arctic circle (above 45N) at any time of high geomagnetic activity.

Translate this into a complete query for data. Was all the needed information recorded?

Information needs to be inferred (and integrated) from the use-case

What is returned: Data from instruments, indices and models.
VSTO Progress

• Semantic framework developed and built with a small team in a relatively short time
• Production portal released, includes security, etc. with full community migration (and so far endorsement)
• VSTO ontology version 0.4, (vsto.owl)
• Web Services encapsulation of semantic interfaces being documented
• More use-cases to drive the completion of the ontologies - filling out the instrument ontology
What is an Ontology: A branch of study concerned with the nature and relations of being, or things which exist. A formal machine-operational specification of a conceptualization.

Semantic Web: An extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation, www.semanticweb.org

Diagram

- **Catalog/ID**
 - **Terms/glossary**
 - **Informal**
 - **is-a**
 - **Thesauri**
 - **“narrower term” relation**
 - **Formal**
 - **is-a**
 - **Frames**
 - **(properties)**
 - **General Logical constraints**
 - **Value Restrs.**
 - **Disjointness, Inverse, part-of…**

based on AAAI ’99 Ontologies panel – McGuinness, Welty, Ushold, Gruninger, Lehmann
Why we were led to semantics

• When we integrate, we integrate concepts, terms
• In the past we would ask, guess, research a lot, or give up
• It’s pretty much about **meaning**
• Semantics can really help find, access, **integrate, use, explain, trust**…
• What if you…
 - could not only use your data and tools but remote colleague’s data and tools?
 - understood their assumptions, constraints, etc and could evaluate applicability?
 - knew whose research currently (or in the future) would benefit from your results?
 - knew whose results were consistent (or inconsistent) with yours?…
The Earth System Grid

NCAR
- SLAMON daemon
- TOMCAT
- AXIS
- GRAM
- NCL openDAPg client
- LAS server
- gridFTP server/client
- HRM
- openDAPg server

LLNL
- CDAT openDAPg client
- gridFTP server/client
- HRM
- DISK
- openDAPg server
- MySQL
- RLS
- THREDDS catalogs
- Xindice
- GSI
- CAS client
- MyProxy client
- MyProxy server

LLNL
- DISK
- MySQL
- RLS
- GSI
- CAS client

ISI
- MCS
- MySQL
- Xindice
- OGSA-DAIS
- GSI

ANL
- AUTH metadata
- GSI
- CAS server

ORNL
- TOMCAT
- SLAMON daemon
- gridFTP server/client
- HRM
- ORNL HPSS
- DISK
- MySQL
- RLS
- GSI

LBNL
- gridFTP server/client
- HRM

DISK
- MySQL
- RLS
- GSI
- CAS client

SECURITY services
- CAS server

DATA storage
- AUTH metadata
- GSI
- CAS server

METADATA services
- MySQL
- RLS
- THREDDS catalogs
- Xindice
- GSI
- CAS client

FRAMEWORK services
- gridFTP server/client
- HRM
- openDAPg server

TRANSPORT services
- gridFTP server/client
- HRM
- openDAPg server

ANALYSIS & VIZ services
- gridFTP server/client
- HRM
- openDAPg server

MONITORING services
- gridFTP server/client
- HRM
- openDAPg server

DATA storage
- DISK
- MySQL
- RLS
- GSI
- CAS client

SECURITY services
- CAS server

DATA storage
- DISK
- MySQL
- RLS
- GSI
- CAS client
The data grid example - data driven science

- Earth System Grid (ESG) serving coupled climate system model data
- 220 TB, 25 TB delivered in 2005
- Data grid based on OPeNDAP-g, subsetting, aggregation, bulk file transfers
- Since Dec. 2004, the ESG/IPCC clone portal has 28TB published (66,000 files) 650 users/projects, with > 428,000 ‘files downloaded’, ~100TB (~200GB/day)
 - > 250 research papers
- Gearing up for 5th assessment: 2010-2012