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Abstract. Conceptual modeling can be viewed as a way of expressing
human understanding of a body of knowledge. This view can be viewed
as distinct from standard notions of data modeling and ontology, which
seek to directly describe data and reality. We define conceptual inter-
operability, give use cases and requirements for it, and introduce the
Conceptual Model Ontology (CMO), which satisfies the discussed use
cases and requirements. We show how, using a common vocabulary, con-
ceptual models can be used to tie together data at the level of conceptual
interoperability. Finally, we introduce an implementation of CMO in the
semantic web Biomedical Informatics Grid (swBIG), a linked data proxy
for cancer Biomedical Informatics Grid (caBIG) models, semantic meta-
data, and data.

1 Introduction

The relationship between entities, the ideas of those entities, and their infor-
mation representations has come to the forefront of ontology and information
modeling, as conceptual models [1] have become critical in creating encodings
of human understanding of information [2]. To support this, layered representa-
tions of information models, such as the conceptual, logical, and physical model
layers, [3] [4] have become common practice in many modeling disciplines. We
seek a metamodeling ontology that can easily express human understanding of
entities and their data in terms of independent, reusable vocabularies that can
be annotated onto conventional ontologies in a way that does not computation-
ally disturb the annotated ontology (does not produce any undesired inferences)
and does not require modification of the ontology or the data it represents. Our
goal is to provide a way to use these sorts of annotations to satisfy certain use
cases for conceptual interoperability [5].

2 Background

Ontologies are usually created using one of two strategies: linguistic or realist.
Linguistic ontologies are based on how people talk about entities, whereas realist
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ontologies limit their domain to things that have scientific evidence of existence
in the real world [6]. Examples of linguistic ontologies include the HL7 Refer-
ence Information Model (RIM) [7], the Descriptive Ontology for Linguistic and
Cognitive Engineering (DOLCE) [8], and the Suggested Upper Merged Ontology
(SUMO) [9]. Realist ontologies attempt to model reality as it is, and only model
things as there is scientific evidence [8]. The Basic Formal Ontology (BFO) [10]
is possibly the most rigorous example of a realist ontology. The realist strategy
can provide a framework for relating other strategies, including conceptual mod-
els. Smith et al. [2] have developed a three-layer system for things in the world,
our ideas of them, and representations of those ideas. Specifically, they define
the following levels of entities that are involved in ontologies:

Level 1: the objects, processes, qualities, states, etc. in reality (for example on
the side of the patient);

Level 2: cognitive representations of this reality on the part of researchers and
others;

Level 3: concretizations of these cognitive representations in (for example tex-
tual or graphical) representational artifacts.

We deal with Level 1 entities and Level 3 entities, as any Level 2 entity
representation itself becomes a Level 3 entity. Any conceptual model is itself a
set of Level 3 entities that “is about”, or “represents” a Level 1 (realist) or Level
3 (linguistic) ontology [1].

We seek to use conceptual models to achieve conceptual interoperability of
data. Conceptual interoperability is the use of models of human understanding,
or conceptual models, to provide interoperability commensurate with the level
of alignment between conceptual models [11] [5] [12]. Two goals that we set out
for conceptual interoperability are:

— Make similar but distinct data resources available for search, conversion, and
inter-mapping in a way that mirrors human understanding of the data being
searched.

— Make data resources that use cross-cutting models, such as HL7 v. 3 RIM!
and provenance models, interoperable with domain-specific models without
explicit mappings between them.

Resources such as the Gene Expression Omnibus (GEO) [13], ArrayExpress
[14], and caArray [15] all contain separate logical models, but rely on the same
conceptual model, MAGE [16]. By encoding this model over each resource with
a common vocabulary, it could then become possible to search across all re-
sources using a single query, or easily convert data from one resource to another.
Similarly, conceptual interoperability could enable to ability to search for pa-
tient history across domain-specific databases using queries that only talk about
patient history, as we show in our Translational Research Provenance Vision
[17].

! Health Level 7 Version 3 Reference Information Model [7)
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An example of an application of translational research provenance is one
of a cancer patient that has agreed to participate in a translational research
study that includes basic life science research. The goal of this research is to
discover biomarkers that can predict how patients respond to treatment in terms
of survivability and adverse reactions to treatment. These kinds of studies have
been common and long standing [18]. In our example study, we need systems
that can track when the patient last visited any doctor (and therefore tell us
they are still alive as of that date), record when death or any adverse reaction
is reported, and track the biomolecular and imaging data produced by the the
life sciences experiments.

2.1 Relevant Ontologies and Frameworks

We leverage properties and classes from the BFO [6] and Information Artifact
Ontology, [19] which are implementations of the scientific realist perspective on
developing ontologies. We also leverage SKOS [20] as a basis for simple common
vocabularies and associating conceptual models with those vocabularies. This
work was based on practical issues surrounding mapping semantics from the can-
cer Biomedical Informatics Grid (caBIG) [21] into the semantic web. We have
in the past worked on converting caBIG’s layered semantics into OWL [22],]23]
with success; however, the representation is limited to caBIG applications. Ad-
ditionally, the mapping could not produce a one-to-one mapping between UML
attributes and OWL properties, resulting in complex, unintuitive models.

3 Conceptual Interoperability Use Cases and
Requirements

We divide the possible use cases of conceptual interoperability into three groups:
search (or query), conversion, and direct mapping. Each of these use cases can be
tailored to specific applications and additional requirements based on the level
of interoperability needed.

Search: A user would like to perform queries using controlled vocabularies, with
no knowledge of the underlying model. For example, “List the ncit: Education_Level
of all ncit:Persons.” or “Find me all ncit: Tissue_Specimens from ncit:Persons
with an ncit: Adverse_Event while taking ncit:Drug x.”

Conversion: A user would like to convert instance? data over with a certain
level of fidelity data from one logical model to another. This can be between
domain models, or between a domain model and a cross-cutting model, such
as a provenance model. For example, when events of ncit: Clinical_Service
occur with a given ncit:Date, create a record of ncit: Vital_Status of ncit: Alive
on that ncit:Date.

2 Instances here and in the rest of the paper informally refer to OWL Individuals.
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Mapping: A user would like to create an automated mapping between two
logical models. For example, take existing caBIG data models and align
them with the BRIDG (Biomedical Research Integrated Domain Group)
model [24]. This would occur when it is desirable for the Annotation and
Image Markup [25] class Person to be automatically mapped as subclass of
bridg: Person because of their mutual relationship with ncit:Person.

We have identified a number of requirements for tools that would support
these use cases:

Common Vocabulary: Conceptual models must use a common vocabulary
that is distinct from any particular conceptual model. This is to allow porta-
bility of vocabularies between models, and prevent the reliance on one par-
ticular representation that might favor one logical model over another.

Distinction from Logical Models: A conceptual model and its vocabulary
must not be represented in the same metamodel as a logical model. Doing
so in metamodels that support reasoning may allow for direct inferences be-
tween conceptual and logical layers. This can have unintended consequences,
for example, in cases where the logical and conceptual models are both ex-
pressed in OWL. If the logical model has classes that are subsumed by con-
ceptual model classes, then it no longer becomes clear if the instance is
referring to an instance of a thing, or an instance of an idea of a thing.

Natural, Idiomatic Expression: A conceptual modeling framework must sup-
port natural, idiomatic expression of the actual data in its natural form. This
means that there must never be any need to modify a logical model or its
data in order to allow annotation of a conceptual model onto it.

Types, Properties, and Relations: A conceptual modeling framework must
provide a way to express relationships between types, properties, and rela-
tions.

Additional Relationships: Most concepts have inter-relationships that can
assist in improving conceptual interoperability. Any framework must provide
a way of expressing these additional relationships.

These requirements come from previous experience with modeling layered se-
mantics using OWL [22] where relating models with reference terminologies ex-
pressed in the same language (OWL 1) proved problematic.

4 The Conceptual Model Ontology

The Conceptual Model Ontology (CMO)? is a metamodel for representing con-
ceptual models and their inter-relationships to logical models and vocabularies.
Core to the CMO are these three classes:

cmo:Type An abstract or general idea inferred or derived from specific in-
stances, representing a set of those instances.

3 http://purl.org/twc/ontologies/cmo.owl
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cmo:Quality The conceptual representation of anything that is a property (a
thing that is inherent in an entity, like eye color) or an attribute (a thing
that has been assigned, or attributed, to an entity, like name or identification
number). cmo:Quality is considered the union of those two sets, so issues
relating to determining if a quality is an attribute or property are not relevant
here.

cmo:Relation A concept representing the relationship between two indepen-
dent entities.

Each of these classes are subclasses of skos:Concept, which is in turn is a sub-
class of iao:information content entity [19]. These concepts are considered Level
3 entities from Smith et al. [2]. Concepts are tied to logical models through
the cmo:represents property, a subproperty of iao:is about. Entities in logical
models can either be concepts or Universals (Type 1 entities). ¢cmo:Universal
is a subclass of bfo:independent_continuent and cmo:FiatEntity is a subclass of
bfo:generically_dependent_continuent. Both cmo:Universal and cmo:FiatEntity
have requisite classes, qualities, and relations, and are intended to be types that
are punned on to OWL classes and properties in the OWL 2 metamodeling
pattern [26]. The class hierarchy is displayed in Figure 1. Classes that are not
universals are usually considered to be themselves concepts, and are metamod-
eled as skos:Concepts. These classes, since they are themselves concepts, in a
very real sense represent themselves. However, it is impossible for a universal to
represent itself, since universals are not considered to be concepts.

bfo2:Entity

are

snap:Continuant

4

are
1

[ snap:IndependentContinuant J

——dre
[snap:GenericalIyIndependenthntinuant]

are

I

[iac:'infcrmatiﬂn content entity’ ]

are
cmo:UniversalRelation
cmo:UniversalClass

cmo:UniversalQuality

are

—.e

Fig. 1. CMO Classes and their relationships with BFO, TAO, and SKOS.
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Subproperties of skos:broadMatch are provided to provide relationships be-
tween CMO concepts and common vocabularies. We provide cmo:hasPrimaryConcept
and cmo:hasQualifier to allow for more nuanced composition, for example allow-
ing “Tissue Specimen” to have a primary concept of “Specimen” and a qualifier
of “Tissue”.

We use SKOS as a basis for CMO because of its following properties. SKOS
concepts unambiguously align to the definitions of concepts that we are using,
while OWL is ambiguous in its definitions of “class”, it could either be considered
a set or a concept. This is important, because we seek to draw a distinction
between concepts as they exist in conceptual models, and the sets of things
that they represent. Alternatively, remaining in OWL DL means that to use
OWL classes as a common vocabulary would mean either creating instances of
that class or punning that class to an instance. Punning the class means that
the instance no longer has any semantics associated with it, and would need
to either be given the type of the OWL class to regain semantics, or be given
secondary semantics using an alternative structure. Here we do exactly that by
giving the instance semantics using SKOS. Giving the class as a type of the
instance in the conceptual model is also problematic, because it conflates being
a thing of a type and being the idea of a type. The idea of a cat is not a cat,
and when creating a conceptual metamodel that integrates with instance data,
it is important to maintain that distinction.

cmo: Type relates to cmo:Quality through the use of cmo:hasQuality and its
inverse, cmo:qualityOf. Qualities can have cmo:valuesCanBe assertions which
provide the set of possible values for that quality. c¢mo:Relation has source
(emo:hasSourceRole) and target (cmo:hasTargetRole) types which help describe
how those entities are related. Taken together, these qualities and relations form
the structure of a conceptual model. The relations of CMO are outlined in Fig-
ure 2. By tying into existing common vocabularies, CMO-based concept models
can be easily aligned along those vocabularies, as we will show below.

5 Implementation

The Conceptual Model Ontology is currently used as a backbone for “semantic
web for the Biomedical Informatics Grid” (swBIG)*. This tool is currently avail-
able as a prototype RESTful service [27] that converts requests for resources
from linked data URIs to caGrid service calls to requisite grid endpoints. This
service uses a representation of NCI Thesaurus [28] converted to a SKOS rep-
resentation® using OWLtoSKOS®. This representation addresses some, but not
all of the concerns of Shulz et al. [29], and provides the ability to reason over
concepts as instances in property value sets as well as in conceptual models.

4 http://swbig.googlecode.com
® Available at http://krauthammerlab.med.yale.edu/ jpm78/skos
5 http://owltoskos.googlecode.com
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Fig. 2. CMO properties and how they integrate with SKOS and TAO.

For this paper, we will use the HINTS 2005 grid service” as an example.
HINTS is the National Cancer Institute’s Health Information National Trends
Survey [30]. A grid service has been deployed to publish results from the 2005
survey. In the following examples, the URI prefix swbig: will be used in place
of the proxy prefix URI http://purl.org/twc/cabig/. The HINTS grid service
endpoint URL will be abbreviated to [HINTS]. The following operations are
supported:

Model by project: swbig:model/[name/-[version].owl Return a model from caDSR
using the model name and version. For example, return the HINTS 2005 ver-
sion 1 model: swbig:model/HINTS2005-1.owl.

Model by endpoint: swbig:endpoint/[endpoint].owl Return a model from a
designated service endpoint. For example, return the model published by
the HINTS grid service: swbig:endpoint/[HINTS].owl.

Get instance: swbig:endpoint/[endpoint]/[package].[Class]/[identifier] Return
an instance from a designated service endpoint. For example, return the
Person with an ID of 1.8

" The service endpoint is http://hints2005.westat.com:8080/wsrf/services/cagrid/Hints2005
8 swhig:endpoint /[HINTS]/gov.nih.nci.dceps.hints2005.domain. Person /1
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List instances: swbig:list/[endpoint]/[package].[Class] Return all instances of
a type from a designated service endpoint. For example, return all Person
objects published by the HINTS grid service.”

The UML model is very closely mapped to preserve generalizations, at-
tributes, and associations. Class and value typing on attributes and associations
(using domain and range) and cardinality are preserved. When permissible val-
ues are listed for an attribute as part of the Common Data Element (CDE) [31]
[32], an OWL ObjectProperty is created with a range of an enumeration class
of the permitted concepts (not strings). The concepts for classes, attributes,
and properties as represented in CDEs are modeled using CMO. Instance data
is generated using the model to determine and query associations and convert
values to concepts when a permissible value mapping is used.

6 Evaluation

The Conceptual Model Ontology addresses all of the conceptual interoperability
use cases and requirements. For example, the Query use case is satisfied with
queries such as the one in Figure 3, which queries for the number of survey par-
ticipants with a given level of education. The results of this query are displayed
in Figure 4.

PREFIX cmo: <http://purl.org/twc/ontologies/cmo.owl#>

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

PREFIX ncit: <http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#>
PREFIX swbig: <http://purl.org/twc/cabig/endpoints/>

select count(distinct 7person) as 7count ?value
from swbig:http://hints2005.westat.com:8080/wsrf/services/cagrid/Hints2005

where {
7person a 7class.
?class cmo:representedBy 7type.
?type skos:broader ncit:Person.
7person 7prop 7v.
?prop cmo:representedBy 7qg.
?q skos:broader ncit:Education_Level.
?7v rdfs:label ?value.

Fig. 3. Query 1: “Return the distribution of education level of all persons in the HINTS
2005 grid service.” This query is performed by only using terms from a common vo-
cabulary, NCI Thesaurus.

9 swhig:list/[HINTS] /gov.nih.nci.dccps.hints2005.domain. Person
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Distribution of Educational Level in HINTS 2005 Survey

Professional Doctorate Degree Completion [N
Master's Degree Completion (I
Bachelor's Degree Completion [N
Associate Academic Degree Completion | I
Some College Completion I
Vocational Program Completion [
High School Completion I
8th Grade Completion Il
5th Grade Completion [l

Education Level

0 50 100 150 200 250 300
# of People

Fig. 4. Distribution of educational level in the HINTS 2005 survey. These data were
gathered using the query in Figure 3.

Conversion of data can be handled using rules such as the one in Figure 5.
This example illustrates how CMO can be modified depending on the require-
ments of the task. The built-in semantics of CMO are kept minimal so that rules
based on it can be tailored to the needs of the task. Some applications may
require very strict conceptual alignment, while other applications may require
a looser coupling in order to meet requirements. Models can also be mapped
directly onto each other as shown in Figure 6.

CMO also satisfies conceptual interoperability requirements. Common vocab-
ularies are distinct from the conceptual and logical models. Existing ontologies
in OWL can be annotated without modification or change to existing seman-
tics. While CMO is used to express semantics from caBIG, it is not limited to
caBIG models. CMO provides a simple way to express relationships between
types, properties, and relations. Finally, because it uses SKOS-based common
vocabularies, CMO allows additional relationships to be asserted between those
concepts. For example, it is possible to assert that birds can fly at the concep-
tual level with direct assertions that have no automatic inference. Performing
this using concepts means that this can be compared against instances with-

out triggering consistency exceptions, such as the case with flightless or injured
birds.

7 Future Work

We are currently investigating the use of CMO models to provide automated
mappings of caBIG data elements into the BRIDG clinical model. This effort
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Fig. 5. Mapping data from one logical model to another. By identifying that a “parent”
class hangs directly off of a broader term of a “child” class, an instance of the “child”
class can be given the type of the “parent”.
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Fig. 6. Mapping logical models directly on to each other can be accomplished by dis-
covering relative relationships of the classes within the common vocabulary. The left
hand side of the figure shows the precondition for mapping one class to another. The
right side is the final state, where the added “are” arc represents the assertion that
2domainClass is now a subclass of ?bridgClass.

/ I*
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has seen some initial success, and work continues. Additionally, we will explore
the use of CMO to represent domain-specific models in relation to a common
model of provenance as envisioned in McCusker and McGuinness [17], as well
as explore the use of a common vocabulary to provide a unified view of existing
provenance models and domain models in terms of provenance. We hope to do
this with the Translational Medicine Ontology [33] as well. Finally, CMO does
not yet provide a way to map between different levels of granularity. One model
may represent a relationship as a direct link, while another may provide an
intervening class which provides more information. It would be useful for CMO
to include a property for how these levels relate.

8 Conclusion

Conceptual models can play a significant role in automated semantic interoper-
ability, because they can allow the integration of data from across logical models
without the need for direct integration of logical models. The Conceptual Model
Ontology can support important uses cases in conceptual interoperability and
is being used to represent existing semantics from a large software development
program (caBIG). CMO is currently available for use with instance data using
the swBIG linked data proxy. Finally, CMO is not limited to caBIG models, but
can be applied to any logical model expressed in OWL.
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